Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/7110
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peng, Rui | en |
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Yan, Shusen | en |
dc.date.accessioned | 2011-01-10T10:53:00Z | - |
dc.date.created | 2010 | - |
dc.date.issued | 2010 | - |
dc.identifier.uri | https://hdl.handle.net/1959.11/7110 | - |
dc.description.abstract | A basic goal of theoretical ecology is to understand how the interactions of individual organizations with each other under a certain inhabiting environment determine the spatiotemporal structure of distribution of populations. The diffusive logistic equation, which describes the spatial and temporal distribution of the population density of a single species, is one of the fundamental reaction-diffusion equation models in population biology. In this thesis, we are concerned with the periodic logistic equation with homogeneous Neumann boundary conditions. The theory for this basic case forms the foundation for further investigation of multispecies problems. The thesis consists of four chapters. | en |
dc.language | en | en |
dc.title | Period-parabolic Logistic Equation with Spatial and Temporal Degeneracies | en |
dc.type | Thesis Doctoral | en |
dcterms.accessRights | UNE Green | en |
dc.subject.keywords | Mathematical Sciences | en |
local.contributor.firstname | Rui | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Shusen | en |
local.subject.for2008 | 019999 Mathematical Sciences not elsewhere classified | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
dcterms.RightsStatement | Copyright 2010 - Rui Peng | en |
dc.date.conferred | 2010 | en |
local.hos.email | hoshass@une.edu.au | en |
local.thesis.degreelevel | Doctoral | en |
local.thesis.degreename | Doctor of Philosophy | en |
local.contributor.grantor | University of New England | en |
local.profile.school | Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | rpeng2@une.edu.au | en |
local.profile.email | ydu@une.edu.au | en |
local.profile.email | syan@une.edu.au | en |
local.output.category | T2 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une_thesis-20100413-12435 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Peng | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Yan | en |
dc.identifier.staff | une-id:rpeng2 | en |
dc.identifier.staff | une-id:ydu | en |
dc.identifier.staff | une-id:syan | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | supervisor | en |
local.profile.role | supervisor | en |
local.identifier.unepublicationid | une:7276 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Period-parabolic Logistic Equation with Spatial and Temporal Degeneracies | en |
local.output.categorydescription | T2 Thesis - Doctorate by Research | en |
local.school.graduation | School of Humanities, Arts & Social Sciences | en |
local.thesis.borndigital | yes | en |
local.search.author | Peng, Rui | en |
local.search.supervisor | Du, Yihong | en |
local.search.supervisor | Yan, Shusen | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/0048f6f3-36a8-41c1-8dc7-0a0eba578c65 | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/465b5909-910c-48ce-8641-af9d6047fcd1 | en |
local.uneassociation | Yes | en |
local.year.conferred | 2010 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/0048f6f3-36a8-41c1-8dc7-0a0eba578c65 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/465b5909-910c-48ce-8641-af9d6047fcd1 | en |
Appears in Collections: | School of Science and Technology Thesis Doctoral |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
open/MARCXML.xml | MARCXML.xml | 2.94 kB | Unknown | View/Open |
open/SOURCE03.pdf | Abstract | 93.13 kB | Adobe PDF Download Adobe | View/Open |
open/SOURCE04.pdf | Thesis | 478.97 kB | Adobe PDF Download Adobe | View/Open |
Page view(s)
1,248
checked on Jul 23, 2023
Download(s)
350
checked on Jul 23, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.