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Abstract

A basic goal of theoretical ecology is to understand how the interactions of individual organiza-

tions with each other under a certain inhabiting environment determine the spatiotemporal struc-

ture of distribution of populations. The diffusive logistic equation, which describes the spatial

and temporal distribution of the population density of a single species, is one of the fundamental

reaction-diffusion equation models in population biology.

In this thesis, we are concerned with the periodic logistic equation with homogeneous Neu-

mann boundary conditions. The theory for this basic case forms the foundation for further inves-

tigation of multispecies problems. The thesis consists of four chapters.

In chapter 1, we introduce some notations and recall the related theory of Sobolev Spaces. We

also collect some fundamental theories for partial differential equations, and recall the definitions

of sub/super solutions and the theory on principal eigenvalue of the periodic-parabolic problems.

Finally, we recall the well-known Krein-Rutman theorem. These preliminaries will be frequently

used in the subsequent chapters.

In chapter 2, we first introduce the biological background of the logistic equation. We then

recall the existing research works on the logistic equation with spatial degeneracies and the

periodic-parabolic logistic equation. As an ending of this chapter, we outline our investigation in

this thesis.

In chapter 3, we study the periodic logistic equation:
∂tu−∆u = au− b(x, t)up in Ω× (0,∞),

∂νu = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) ≥, ̸≡ 0 in Ω,
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where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω, a and p > 1 are

constants. The function b ∈ Cθ,θ/2(Ω × R) (0 < θ < 1) is T-periodic in t and nonnegative on

Ω× R.

This equation describes the population density u(x, t) of a single species with initial density

u0(x) and intrinsic growth rate a in a habitat Ω that has carrying capacity a/b. The Neumann

boundary condition means that the species is enclosed in Ω with no population flux across its

boundary ∂Ω.

Our main interest here is to examine the case that b(x, t) vanishes in a proper subset of

Ω × R. We will call such a case a degeneracy in the logistic equation. The region where b

vanishes represents the extreme environmental situation that the species experiences no self-

limitation for its growth there. A good understanding of such an extreme case is important in

order to understand the scope of the possible behavior of the model as the environment varies

heterogeneously.

We examine the effects of various natural spatial and temporal degeneracies of b(x, t) on the

long-time dynamical behavior of the positive solutions. Our analysis leads to a new eigenvalue

problem for periodic-parabolic operators over a varying cylinder and certain parabolic initial

and boundary blow-up problems not known before. Our investigation shows that the temporal

degeneracy causes a fundamental change of the dynamical behavior of the equation only when

spatial degeneracy also exists; but in sharp contrast, whether or not temporal degeneracy appears

in the equation, the spatial degeneracy always induces fundamental changes of the behavior of

the equation, though such changes differ significantly according to whether there is temporal

degeneracy or not.

In chapter 4, we consider the perturbed periodic logistic equation:
∂tu−∆u = au− [b(x, t) + ϵ]up in Ω× (0, T ),

∂νu = 0 on ∂Ω× (0, T ),

u(x, 0) = u(x, T ) in Ω,

and determine the asymptotic behavior of the positive periodic solution as ϵ → 0. This reveals

how the model evolves as the environment approaches the extreme degenerate case.
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Under the same assumption on b(x, t) as in chapter 3, our conclusions show that the tempo-

ral degeneracy generates patterns only when spatial degeneracy also exists. Moreover, in sharp

contrast with the case where only spatial degeneracy exists, the perturbed periodic logistic equa-

tion is capable of generating some very different spatiotemporal patterns when both spatial and

temporal degeneracies occur.
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