Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64877
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adeyemo, Victor Elijah | en |
dc.contributor.author | Palczewska, Anna | en |
dc.contributor.author | Jones, Ben | en |
local.source.editor | Editor(s): M Arif Wani, Ishwar Sethi, Weisong Shi, Guangzhi Qu, Daniela Stan Raicu and Ruoming Jin | en |
dc.date.accessioned | 2025-02-26T02:14:38Z | - |
dc.date.available | 2025-02-26T02:14:38Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | 20th IEEE International Conference on Machine Learning and Applications, p. 455-460 | en |
dc.identifier.isbn | 9781665443371 | en |
dc.identifier.isbn | 9781665443388 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64877 | - |
dc.description.abstract | <p>The analysis of athletes’ spatiotemporal data provides actionable insights for strength and conditioning and customized training designs. The identification of unique movements and adjacent match events of team-sport athletes is important. It helps to understand the demands of a match and to advance training programs by improving training specificity. In this paper we present a novel l-length Closed Contiguous sequential pattern mining (LCCspm) algorithm. To validate LCCspm, England Rugby Football League (RFL) Super League players’ movements and Fédération Internationale de Football Association (FIFA) 2018 football world cup events datasets were used. The algorithm was compared with the other existing algorithm (i.e., CCspan). Empirically, the most frequently discovered closed contiguous patterns from RFL were 1-7 length movement patterns while 10-40 length patterns were those discovered in men’s FIFA 2018 world cup. This reflects the duration at which RFL and FIFA football match events usually occur and how data granularity influence results. LCCspm greatly outperforms the CCSpan in terms of scalability, runtime and memory usage. The use of LCCspm instead of CCspan for mining closed contiguous sequences regardless of the length of patterns and size of the database is recommended as it offers timely retrieval of patterns with lesser compute.</p> | en |
dc.language | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartof | 20th IEEE International Conference on Machine Learning and Applications | en |
dc.title | LCCspm: l-Length Closed Contiguous Sequential Patterns Mining Algorithm to Find Frequent Athlete Movement Patterns from GPS | en |
dc.type | Conference Publication | en |
dc.relation.conference | ICMLA 2021: 20th IEEE International Conference on Machine Learning and Applications | en |
dc.identifier.doi | 10.1109/ICMLA52953.2021.00077 | en |
dc.subject.keywords | Sports Tracking Data | en |
dc.subject.keywords | Rugby League Movement Sequence | en |
dc.subject.keywords | FIFA World cup | en |
dc.subject.keywords | Computer Science, Artificial Intelligence | en |
dc.subject.keywords | Computer Science, Theory & Methods | en |
dc.subject.keywords | Computer Science | en |
dc.subject.keywords | Sequential Pattern Mining | en |
dc.subject.keywords | Closed Contiguous Sequence | en |
local.contributor.firstname | Victor Elijah | en |
local.contributor.firstname | Anna | en |
local.contributor.firstname | Ben | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | bjones64@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 13th –16th December, 2021 | en |
local.conference.place | Virtual Event | en |
local.publisher.place | United States of America | en |
local.format.startpage | 455 | en |
local.format.endpage | 460 | en |
local.peerreviewed | Yes | en |
local.title.subtitle | l-Length Closed Contiguous Sequential Patterns Mining Algorithm to Find Frequent Athlete Movement Patterns from GPS | en |
local.contributor.lastname | Adeyemo | en |
local.contributor.lastname | Palczewska | en |
local.contributor.lastname | Jones | en |
dc.identifier.staff | une-id:bjones64 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64877 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | LCCspm | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | ICMLA 2021: 20th IEEE International Conference on Machine Learning and Applications, Virtual Event, 13th –16th December, 2021 | en |
local.search.author | Adeyemo, Victor Elijah | en |
local.search.author | Palczewska, Anna | en |
local.search.author | Jones, Ben | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.conference.venue | Virtual Event | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | WOS:000779208200069 | en |
local.year.published | 2021 | en |
local.year.presented | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/27361626-ea36-455d-8932-3f0dc46b4de1 | en |
local.subject.for2020 | 4207 Sports science and exercise | en |
local.date.start | 2021-12-13 | - |
local.date.end | 2021-12-16 | - |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.