Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64748
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRahman Khan, Md Nabilen
dc.contributor.authorSalsabil, Most Sadiaen
dc.contributor.authorHasib, Khan Mden
dc.contributor.authorIslam, Md Rafiqulen
dc.contributor.authorShafiul Alam, Mohammaden
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
local.source.editorEditor(s): Ngoc Thanh Nguyen, Richard Chbeir, Yannis Manolopoulos, Hamido Fujita, Tzung-Pei Hong, Le Minh Nguyen, Krystian Wojtkiewiczen
dc.date.accessioned2025-02-15T07:03:09Z-
dc.date.available2025-02-15T07:03:09Z-
dc.date.issued2024-08-13-
dc.identifier.citationRecent Challenges in Intelligent Information and Database Systems, p. 219-235en
dc.identifier.isbn9789819759347en
dc.identifier.isbn9789819759330en
dc.identifier.urihttps://hdl.handle.net/1959.11/64748-
dc.description.abstract<p>tock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study proposes the use of Bidirectional Encoder Representations from Transformers (BERT), a pre-trained Large Language Model (LLM), to predict Dhaka Stock Exchange (DSE) market movements. We also introduce a new dataset designed specifically for this problem, capturing important characteristics and patterns that were missing in other datasets. We test our new dataset of headlines and stock market indexes on various machine learning techniques, including Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RF), Linear Support Vector Machine (LSVM), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Bidirectional Long Short-Term Memory (Bi-LSTM), BERT, Financial Bidirectional Encoder Representations from Transformers (FinBERT), and RoBERTa, which are compared to assess their predictive capabilities. Our proposed model achieves 99.83% accuracy on the training set and 99.78% accuracy on the test set, outperforming previous methods.</p>en
dc.languageenen
dc.publisherSpringer, Singaporeen
dc.relation.ispartofRecent Challenges in Intelligent Information and Database Systemsen
dc.relation.ispartofseriesCommunications in Computer and Information Science (CCIS)en
dc.titleNews that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERTen
dc.typeConference Publicationen
dc.relation.conferenceACIIDS 2024: 16th Asian Conference on Intelligent Information and Database Systemsen
dc.identifier.doi10.1007/978-981-97-5934-7_19en
local.contributor.firstnameMd Nabilen
local.contributor.firstnameMost Sadiaen
local.contributor.firstnameKhan Mden
local.contributor.firstnameMd Rafiqulen
local.contributor.firstnameMohammaden
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcesar.sanin@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference15th - 18th April, 2024en
local.conference.placeUAEen
local.publisher.placeSingaporeen
local.format.startpage219en
local.format.endpage235en
local.series.issn1865-0937en
local.series.issn1865-0929en
local.series.number2145en
local.peerreviewedYesen
local.title.subtitleDSEX-News Dataset for Forecasting DSE Using BERTen
local.contributor.lastnameRahman Khanen
local.contributor.lastnameSalsabilen
local.contributor.lastnameHasiben
local.contributor.lastnameIslamen
local.contributor.lastnameShafiul Alamen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64748en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleNews that Moves the Marketen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsACIIDS 2024: 16th Asian Conference on Intelligent Information and Database Systems, UAE, 15th - 18th April, 2024en
local.search.authorRahman Khan, Md Nabilen
local.search.authorSalsabil, Most Sadiaen
local.search.authorHasib, Khan Mden
local.search.authorIslam, Md Rafiqulen
local.search.authorShafiul Alam, Mohammaden
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
dc.date.presented2024-
local.atsiresearchNoen
local.conference.venueRas Al Khaimah, UAEen
local.sensitive.culturalNoen
local.year.published2024en
local.year.presented2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/90ff1a23-296f-4a8f-aaa0-c3826298f049en
local.subject.for20204602 Artificial intelligenceen
local.date.start2024-04-15-
local.date.end2024-04-18-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-02-18en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.