Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64583
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMiloslavskaya, Veraen
dc.contributor.authorLi, Yonghuien
dc.contributor.authorVucetic, Brankaen
dc.date.accessioned2025-01-25T07:02:13Z-
dc.date.available2025-01-25T07:02:13Z-
dc.date.issued2024-04-
dc.identifier.citationIEEE Transactions on Communications, 72(4), p. 1881-1894en
dc.identifier.issn1558-0857en
dc.identifier.issn0090-6778en
dc.identifier.urihttps://hdl.handle.net/1959.11/64583-
dc.description.abstract<p>In this paper, we propose a novel artificial intelligence (AI) based adaptive polar coding scheme that adapts to various channel conditions and quality of service requirements. To ensure tight adaptation, we develop a new AI-based performance prediction framework for the precoded polar codes under the successive cancellation list (SCL) decoder. This AI-based framework relies on a neural network and recent advancements in the analysis of precoded polar codes, SCL and SC decoders. Then we apply the proposed framework to optimise precoded polar codes for various target frame error rates (FER), signal-to-noise ratios (SNR) and decoding list sizes L , where the code length is fixed to a power of two, but the code rate may vary. We predict the throughput and maximise it over the code rates with bit-level granularity. The proposed approach paves the way towards online adaptive polar coding with high error-correction capability. The constructed codes can be compactly specified using the reliability sequence from the 5G New Radio standard and a single parameter whose value is specific to each code. The simulation results show that the proposed codes outperform 5G polar codes with CRC11 under SCL decoding with various L .</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Transactions on Communicationsen
dc.titleNeural Network-Based Adaptive Polar Codingen
dc.typeJournal Articleen
dc.identifier.doi10.1109/TCOMM.2023.3341838en
local.contributor.firstnameVeraen
local.contributor.firstnameYonghuien
local.contributor.firstnameBrankaen
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailvmilosla@une.edu.auen
local.output.categoryC1en
local.grant.numberFL160100032en
local.grant.numberDP190101988en
local.grant.numberDP210103410en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage1881en
local.format.endpage1894en
local.peerreviewedYesen
local.identifier.volume72en
local.identifier.issue4en
local.contributor.lastnameMiloslavskayaen
local.contributor.lastnameLien
local.contributor.lastnameVuceticen
dc.identifier.staffune-id:vmiloslaen
local.profile.orcid0000-0003-2147-2448en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64583en
local.date.onlineversion2023-12-12-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleNeural Network-Based Adaptive Polar Codingen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/FL160100032en
local.relation.grantdescriptionARC/DP190101988en
local.relation.grantdescriptionARC/DP210103410en
local.search.authorMiloslavskaya, Veraen
local.search.authorLi, Yonghuien
local.search.authorVucetic, Brankaen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5d465ba7-41b0-4b0f-820a-971fba02ae2aen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5d465ba7-41b0-4b0f-820a-971fba02ae2aen
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/5d465ba7-41b0-4b0f-820a-971fba02ae2aen
local.subject.for2020460199 Applied computing not elsewhere classifieden
local.subject.for2020461301 Coding, information theory and compressionen
local.subject.seo2020220107 Wireless technologies, networks and servicesen
local.codeupdate.date2025-02-01T16:26:30.128en
local.codeupdate.epersonvmilosla@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20204601 Applied computingen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-31en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.