Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64583
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Miloslavskaya, Vera | en |
dc.contributor.author | Li, Yonghui | en |
dc.contributor.author | Vucetic, Branka | en |
dc.date.accessioned | 2025-01-25T07:02:13Z | - |
dc.date.available | 2025-01-25T07:02:13Z | - |
dc.date.issued | 2024-04 | - |
dc.identifier.citation | IEEE Transactions on Communications, 72(4), p. 1881-1894 | en |
dc.identifier.issn | 1558-0857 | en |
dc.identifier.issn | 0090-6778 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64583 | - |
dc.description.abstract | <p>In this paper, we propose a novel artificial intelligence (AI) based adaptive polar coding scheme that adapts to various channel conditions and quality of service requirements. To ensure tight adaptation, we develop a new AI-based performance prediction framework for the precoded polar codes under the successive cancellation list (SCL) decoder. This AI-based framework relies on a neural network and recent advancements in the analysis of precoded polar codes, SCL and SC decoders. Then we apply the proposed framework to optimise precoded polar codes for various target frame error rates (FER), signal-to-noise ratios (SNR) and decoding list sizes L , where the code length is fixed to a power of two, but the code rate may vary. We predict the throughput and maximise it over the code rates with bit-level granularity. The proposed approach paves the way towards online adaptive polar coding with high error-correction capability. The constructed codes can be compactly specified using the reliability sequence from the 5G New Radio standard and a single parameter whose value is specific to each code. The simulation results show that the proposed codes outperform 5G polar codes with CRC11 under SCL decoding with various L .</p> | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers | en |
dc.relation.ispartof | IEEE Transactions on Communications | en |
dc.title | Neural Network-Based Adaptive Polar Coding | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1109/TCOMM.2023.3341838 | en |
local.contributor.firstname | Vera | en |
local.contributor.firstname | Yonghui | en |
local.contributor.firstname | Branka | en |
local.relation.isfundedby | ARC | en |
local.relation.isfundedby | ARC | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | vmilosla@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | FL160100032 | en |
local.grant.number | DP190101988 | en |
local.grant.number | DP210103410 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1881 | en |
local.format.endpage | 1894 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 72 | en |
local.identifier.issue | 4 | en |
local.contributor.lastname | Miloslavskaya | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Vucetic | en |
dc.identifier.staff | une-id:vmilosla | en |
local.profile.orcid | 0000-0003-2147-2448 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64583 | en |
local.date.onlineversion | 2023-12-12 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Neural Network-Based Adaptive Polar Coding | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/FL160100032 | en |
local.relation.grantdescription | ARC/DP190101988 | en |
local.relation.grantdescription | ARC/DP210103410 | en |
local.search.author | Miloslavskaya, Vera | en |
local.search.author | Li, Yonghui | en |
local.search.author | Vucetic, Branka | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/5d465ba7-41b0-4b0f-820a-971fba02ae2a | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2023 | en |
local.year.published | 2024 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/5d465ba7-41b0-4b0f-820a-971fba02ae2a | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/5d465ba7-41b0-4b0f-820a-971fba02ae2a | en |
local.subject.for2020 | 460199 Applied computing not elsewhere classified | en |
local.subject.for2020 | 461301 Coding, information theory and compression | en |
local.subject.seo2020 | 220107 Wireless technologies, networks and services | en |
local.codeupdate.date | 2025-02-01T16:26:30.128 | en |
local.codeupdate.eperson | vmilosla@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 4601 Applied computing | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2025-01-31 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.