Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarton, Amiren
dc.contributor.authorDe Oliveira, Marcelo Ten
dc.date.accessioned2025-01-11T07:12:21Z-
dc.date.available2025-01-11T07:12:21Z-
dc.date.issued2025-01-
dc.identifier.citationWiley Interdisciplinary Reviews. Computational Molecular Science, 15(1), p. 1-20en
dc.identifier.issn1759-0884en
dc.identifier.urihttps://hdl.handle.net/1959.11/64451-
dc.description.abstract<p>The hundreds of density functional theory (DFT) methods developed over the past three decades are often referred to as the "zoo" of DFT approximations. In line with this terminology, the numerous DFT benchmark studies might be considered the "safari" of DFT evaluation efforts, reflecting their abundance, diversity, and wide range of application and methodological aspects. These benchmarks have played a critical role in establishing DFT as the dominant approach in quantum chemical applications and remain essential for selecting an appropriate DFT method for specific chemical properties (e.g., reaction energy, barrier height,or noncovalent interaction energy) and systems (e.g., organic, inorganic, or organometallic). DFT benchmark studies are a vital tool for both DFT users in method selection and DFT developers in method design and parameterization. This review provides best-practice guidance on key methodological aspects of DFT benchmarking, such as the quality of benchmark reference values, dataset size, reference geometries, basis sets, statistical analysis, and electronic availability of the benchmark data. Additionally, we present a flowchart to assist users in systematically choosing these methodological aspects, thereby enhancing the reliability and reproducibility of DFT benchmarking studies.</p>en
dc.languageenen
dc.publisherJohn Wiley and Sons Ltden
dc.relation.ispartofWiley Interdisciplinary Reviews. Computational Molecular Scienceen
dc.titleGood Practices in Database Generation for Benchmarking Density Functional Theoryen
dc.typeJournal Articleen
dc.identifier.doi10.1002/wcms.1737en
local.contributor.firstnameAmiren
local.contributor.firstnameMarcelo Ten
local.profile.schoolSchool of Science and Technologyen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage1en
local.format.endpage20en
local.peerreviewedYesen
local.identifier.volume15en
local.identifier.issue1en
local.contributor.lastnameKartonen
local.contributor.lastnameDe Oliveiraen
dc.identifier.staffune-id:akartonen
local.profile.orcid0000-0002-7981-508Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64451en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGood Practices in Database Generation for Benchmarking Density Functional Theoryen
local.relation.fundingsourcenoteThe Euler cluster at the Center for Mathematical SciencesApplied to the Industry (CeMEAI) funded by FAPESP (13/07375- 0)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKarton, Amiren
local.search.authorDe Oliveira, Marcelo Ten
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/33ce05ff-2277-4d45-85bf-203b18559ae4en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2025en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/33ce05ff-2277-4d45-85bf-203b18559ae4en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/33ce05ff-2277-4d45-85bf-203b18559ae4en
local.subject.for20203407 Theoretical and computational chemistryen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-14en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.