Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64383
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MacDonald, M Ethan | en |
dc.contributor.author | Berman, Avery J L | en |
dc.contributor.author | Mazerolle, Erin L | en |
dc.contributor.author | Williams, Rebecca J | en |
dc.contributor.author | Pike, G Bruce | en |
dc.date.accessioned | 2025-01-08T02:11:50Z | - |
dc.date.available | 2025-01-08T02:11:50Z | - |
dc.date.issued | 2018-09 | - |
dc.identifier.citation | NeuroImage, v.178, p. 461-474 | en |
dc.identifier.issn | 1095-9572 | en |
dc.identifier.issn | 1053-8119 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64383 | - |
dc.description.abstract | <p>A new method is proposed for obtaining cerebral perfusion measurements whereby blood oxygen level dependent (BOLD) MRI is used to dynamically monitor hyperoxia-induced changes in the concentration of deoxygenated hemoglobin in the cerebral vasculature. The data is processed using kinetic modeling to yield perfusion metrics, namely: cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). Ten healthy human subjects were continuously imaged with BOLD sequence while a hyperoxic (70% O<sub>2</sub>) state was interspersed with baseline periods of normoxia. The BOLD time courses were fit with exponential uptake and decay curves and a biophysical model of the BOLD signal was used to estimate oxygen concentration functions. The arterial input function was derived from end-tidal oxygen measurements, and a deconvolution operation between the tissue and arterial concentration functions was used to yield CBF. The venous component of the CBV was calculated from the ratio of the integrals of the estimated tissue and arterial concentration functions. Mean gray and white matter measurements were found to be: 61.6 ± 13.7 and 24.9 ± 4.0 ml 100 g<sup>-1</sup> min<sip>-1</sup> for CBF; 1.83 ± 0.32 and 1.10 ± 0.19 ml 100 g<sup>-1</sup> for venous CBV; and 2.94 ± 0.52 and 3.73 ± 0.60 s for MTT, respectively. We conclude that it is possible to derive CBF, CBV and MTT metrics within expected physiological ranges via analysis of dynamic BOLD fMRI acquired during a period of hyperoxia.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | NeuroImage | en |
dc.title | Modeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood flow, volume and mean transit time | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.neuroimage.2018.05.066 | en |
local.contributor.firstname | M Ethan | en |
local.contributor.firstname | Avery J L | en |
local.contributor.firstname | Erin L | en |
local.contributor.firstname | Rebecca J | en |
local.contributor.firstname | G Bruce | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | rwilli90@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.format.startpage | 461 | en |
local.format.endpage | 474 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 178 | en |
local.contributor.lastname | MacDonald | en |
local.contributor.lastname | Berman | en |
local.contributor.lastname | Mazerolle | en |
local.contributor.lastname | Williams | en |
local.contributor.lastname | Pike | en |
dc.identifier.staff | une-id:rwilli90 | en |
local.profile.orcid | 0000-0002-8949-1197 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64383 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Modeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood flow, volume and mean transit time | en |
local.relation.fundingsourcenote | Financial support from the Canadian Institutes of Health Research (CIHR, GBP grant FDN-143290) and the Campus Alberta Innovation Program (CAIP) is gratefully acknowledged. MEM and RJW hold Post-Doctoral Fellowships from the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Training Experience Program (CREATE) program. AJLB holds a PhD scholarship from CIHR. ELM holds an Alberta Innovates Health Solutions Postdoc Fellowship. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | MacDonald, M Ethan | en |
local.search.author | Berman, Avery J L | en |
local.search.author | Mazerolle, Erin L | en |
local.search.author | Williams, Rebecca J | en |
local.search.author | Pike, G Bruce | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/1004a7a2-3ff5-4f23-b711-080e18701efc | en |
local.subject.for2020 | 3209 Neurosciences | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2025-01-08 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.