Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacDonald, M Ethanen
dc.contributor.authorBerman, Avery J Len
dc.contributor.authorMazerolle, Erin Len
dc.contributor.authorWilliams, Rebecca Jen
dc.contributor.authorPike, G Bruceen
dc.date.accessioned2025-01-08T02:11:50Z-
dc.date.available2025-01-08T02:11:50Z-
dc.date.issued2018-09-
dc.identifier.citationNeuroImage, v.178, p. 461-474en
dc.identifier.issn1095-9572en
dc.identifier.issn1053-8119en
dc.identifier.urihttps://hdl.handle.net/1959.11/64383-
dc.description.abstract<p>A new method is proposed for obtaining cerebral perfusion measurements whereby blood oxygen level dependent (BOLD) MRI is used to dynamically monitor hyperoxia-induced changes in the concentration of deoxygenated hemoglobin in the cerebral vasculature. The data is processed using kinetic modeling to yield perfusion metrics, namely: cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). Ten healthy human subjects were continuously imaged with BOLD sequence while a hyperoxic (70% O<sub>2</sub>) state was interspersed with baseline periods of normoxia. The BOLD time courses were fit with exponential uptake and decay curves and a biophysical model of the BOLD signal was used to estimate oxygen concentration functions. The arterial input function was derived from end-tidal oxygen measurements, and a deconvolution operation between the tissue and arterial concentration functions was used to yield CBF. The venous component of the CBV was calculated from the ratio of the integrals of the estimated tissue and arterial concentration functions. Mean gray and white matter measurements were found to be: 61.6 ± 13.7 and 24.9 ± 4.0 ml 100 g<sup>-1</sup> min<sip>-1</sup> for CBF; 1.83 ± 0.32 and 1.10 ± 0.19 ml 100 g<sup>-1</sup> for venous CBV; and 2.94 ± 0.52 and 3.73 ± 0.60 s for MTT, respectively. We conclude that it is possible to derive CBF, CBV and MTT metrics within expected physiological ranges via analysis of dynamic BOLD fMRI acquired during a period of hyperoxia.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofNeuroImageen
dc.titleModeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood flow, volume and mean transit timeen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.neuroimage.2018.05.066en
local.contributor.firstnameM Ethanen
local.contributor.firstnameAvery J Len
local.contributor.firstnameErin Len
local.contributor.firstnameRebecca Jen
local.contributor.firstnameG Bruceen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailrwilli90@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage461en
local.format.endpage474en
local.peerreviewedYesen
local.identifier.volume178en
local.contributor.lastnameMacDonalden
local.contributor.lastnameBermanen
local.contributor.lastnameMazerolleen
local.contributor.lastnameWilliamsen
local.contributor.lastnamePikeen
dc.identifier.staffune-id:rwilli90en
local.profile.orcid0000-0002-8949-1197en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64383en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleModeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood flow, volume and mean transit timeen
local.relation.fundingsourcenoteFinancial support from the Canadian Institutes of Health Research (CIHR, GBP grant FDN-143290) and the Campus Alberta Innovation Program (CAIP) is gratefully acknowledged. MEM and RJW hold Post-Doctoral Fellowships from the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Training Experience Program (CREATE) program. AJLB holds a PhD scholarship from CIHR. ELM holds an Alberta Innovates Health Solutions Postdoc Fellowship.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMacDonald, M Ethanen
local.search.authorBerman, Avery J Len
local.search.authorMazerolle, Erin Len
local.search.authorWilliams, Rebecca Jen
local.search.authorPike, G Bruceen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/1004a7a2-3ff5-4f23-b711-080e18701efcen
local.subject.for20203209 Neurosciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-08en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.