Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64099
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlfalasi, Wadhaen
dc.contributor.authorOthman, Waelen
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorTit, Naciren
dc.date.accessioned2024-12-07T11:18:27Z-
dc.date.available2024-12-07T11:18:27Z-
dc.date.issued2025-03-15-
dc.identifier.citationApplied Surface Science, v.685, p. 1-13en
dc.identifier.issn1873-5584en
dc.identifier.issn0169-4332en
dc.identifier.urihttps://hdl.handle.net/1959.11/64099-
dc.description.abstract<p>Energy storage through metal-ion batteries (MIBs) and hydrogen (H<sub>2</sub>) fuel presents significant opportunities for advancing clean energy technologies. This study comprehensively examined the structural, electronic, electrochemical, and energy storage properties of boron-vacancy induced porous boron nitride monolayers (BN:V<sub>B</sub>) as multifunctional materials, anodes for MIBs and H<sub>2</sub> storage applications. Our computational approaches, density functional theory (DFT), ab initio molecular dynamics (AIMD), and thermodynamic analysis, revealed exceptionally high energy and gravimetric densities for MIBs and H<sub>2</sub> storage, respectively. We investigated the interactions of Li, Na, and K atoms on BN:V<sub>B</sub>, which strongly bonded with binding energies stronger than their bulk cohesive energies, which ensured structural stability and the absence of metal clustering. Electronic properties, analyzed through spin-polarized partial density of states (PDOS), band structure, and Bader charge analysis, revealed significant charge transfers from the metal atoms to BN:V<sub>B</sub>, enhancing the electronic conductivity of the latter. Theoretical specific capacities were calculated as 1821.53, 786.11, and 490.51 mA h/g for Li, Na, and K, respectively, which comfortably exceeded the conventional anodes, such as graphite. Average open-circuit voltages (OCVs) were found to be 0.15, 0.25, and 0.32 V, for Li, Na, and K, respectively, indicating strong electrochemical stability. Diffusion studies showed lower barriers of 0.47, 0.08, and 0.60 eV for Li, Na, and K, respectively, with increased metal loadings, suggesting enhanced mobilities and charge/discharge rates. On the other side, the metal-functionalized BN:V<sub>B</sub> monolayers exhibited remarkably high H<sub>2</sub> gravimetric capacities of 10.64, 10.72, and 9.38 wt% for 4Li-,4Na-, and 4 K@BN:V<sub>B</sub>, respectively, all surpassing the 5.50 wt% target set by the US Department of Energy for 2025. Average adsorption energies of H<sub>2</sub> on 4Li-, 4Na-, and 4K@BN:V<sub>B</sub>, were found in perfect range for practical storage applications. The potential for practical H<sub>2</sub> storage were further supported by Langmuir adsorption model-based statistical thermodynamic analysis, which examined the adsorption and desorption behavior of H<sub>2</sub> under practical conditions. These findings position BN:V<sub>B</sub> as a promising multifunctional candidate for high-performance MIBs anodes and H<sub>2</sub> storage material.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofApplied Surface Scienceen
dc.titleMultifunctionality of vacancy-induced boron nitride monolayers for metal-ion battery and hydrogen-storage applicationsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.apsusc.2024.162025en
local.contributor.firstnameWadhaen
local.contributor.firstnameWaelen
local.contributor.firstnameTanveeren
local.contributor.firstnameNaciren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber162025en
local.format.startpage1en
local.format.endpage13en
local.peerreviewedYesen
local.identifier.volume685en
local.contributor.lastnameAlfalasien
local.contributor.lastnameOthmanen
local.contributor.lastnameHussainen
local.contributor.lastnameTiten
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64099en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMultifunctionality of vacancy-induced boron nitride monolayers for metal-ion battery and hydrogen-storage applicationsen
local.relation.fundingsourcenoteThis work was supported by the National Water and Energy Center at the United Arab Emirates University under research funding (Grant No. 12R162)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAlfalasi, Wadhaen
local.search.authorOthman, Waelen
local.search.authorHussain, Tanveeren
local.search.authorTit, Naciren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/440fe1ab-ffb3-49f2-9e3a-0fcb55fbf8e5en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2025en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/440fe1ab-ffb3-49f2-9e3a-0fcb55fbf8e5en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/440fe1ab-ffb3-49f2-9e3a-0fcb55fbf8e5en
local.subject.for2020510403en
local.codeupdate.date2025-02-01T10:38:08.365en
local.codeupdate.epersonthussai3@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20203407 Theoretical and computational chemistryen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-15en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.