Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Sipingen
dc.contributor.authorLi, Debiaoen
dc.contributor.authorNoman, Nasimulen
dc.contributor.authorHarrison, Kyleen
dc.contributor.authorChiong, Raymonden
local.source.editorEditor(s): Mingming Gong, Yun Sing Koh, Derui Wang, Yiliao Song and Wei Xiangen
dc.date.accessioned2024-11-30T07:51:38Z-
dc.date.available2024-11-30T07:51:38Z-
dc.date.issued2024-11-18-
dc.identifier.citation37th Australasian Joint Conference on Artificial Intelligence, AI 2024 Melbourne, VIC, Australia, November 25–29, 2024 Proceedings, Part I, p. 354-365en
dc.identifier.isbn9789819603480en
dc.identifier.isbn9789819603473en
dc.identifier.urihttps://hdl.handle.net/1959.11/64026-
dc.description.abstract<p>Machine scheduling serves as a vital function for industrial and service operations, and uncertainties always pose a significant challenge in real-world scheduling practices. In this paper, we propose to solve the stochastic machine scheduling problems with uncertain processing times by an improved prescriptive tree-based (IPTB) model. Our approach includes a novel way of combining historical processing time data with current scheduling constraints to strengthen the quality of historical decisions. We apply these improved historical decisions and incorporate an improved model for calculating the optimisation loss and accelerate the training of our IPTB model. Our trained model can directly prescribe downstream scheduling solutions with high robustness in the face of uncertainties. We evaluate the proposed IPTB method on a stochastic parallel machine scheduling problem originating from printed circuit board assembly lines. Through a series of comparative experiments, our findings demonstrate the IPTB method’s superior accuracy and robustness, highlighting its resilience in noisy data environments. Additionally, we interpret the model through feature importance analysis and examine the model’s behaviours under noisy conditions.</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartof37th Australasian Joint Conference on Artificial Intelligence, AI 2024 Melbourne, VIC, Australia, November 25–29, 2024 Proceedings, Part Ien
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.titleAn Improved Prescriptive Tree-Based Model for Stochastic Parallel Machine Schedulingen
dc.typeConference Publicationen
dc.relation.conferenceAI 2024: Advances in Artificial Intelligenceen
dc.identifier.doi10.1007/978-981-96-0348-0_26en
local.contributor.firstnameSipingen
local.contributor.firstnameDebiaoen
local.contributor.firstnameNasimulen
local.contributor.firstnameKyleen
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference25th - 29th November, 2024en
local.conference.placeMelbourne, VIC, Australiaen
local.publisher.placeSingaporeen
local.format.startpage354en
local.format.endpage365en
local.series.issn1611-3349en
local.series.issn0302-9743en
local.series.number15442en
local.peerreviewedYesen
local.contributor.lastnameChenen
local.contributor.lastnameLien
local.contributor.lastnameNomanen
local.contributor.lastnameHarrisonen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64026en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn Improved Prescriptive Tree-Based Model for Stochastic Parallel Machine Schedulingen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.relation.doi10.1007/978-981-96-0348-0en
local.conference.detailsAI 2024: Advances in Artificial Intelligence, Melbourne, VIC, Australia, 25th - 29th November, 2024en
local.search.authorChen, Sipingen
local.search.authorLi, Debiaoen
local.search.authorNoman, Nasimulen
local.search.authorHarrison, Kyleen
local.search.authorChiong, Raymonden
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/2f87a345-14da-4e5f-a9ad-479566d3a89ben
local.subject.for20204602 Artificial intelligenceen
local.date.start2024-11-25-
local.date.end2024-11-29-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2025-02-04en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.