Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64026
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Siping | en |
dc.contributor.author | Li, Debiao | en |
dc.contributor.author | Noman, Nasimul | en |
dc.contributor.author | Harrison, Kyle | en |
dc.contributor.author | Chiong, Raymond | en |
local.source.editor | Editor(s): Mingming Gong, Yun Sing Koh, Derui Wang, Yiliao Song and Wei Xiang | en |
dc.date.accessioned | 2024-11-30T07:51:38Z | - |
dc.date.available | 2024-11-30T07:51:38Z | - |
dc.date.issued | 2024-11-18 | - |
dc.identifier.citation | 37th Australasian Joint Conference on Artificial Intelligence, AI 2024 Melbourne, VIC, Australia, November 25–29, 2024 Proceedings, Part I, p. 354-365 | en |
dc.identifier.isbn | 9789819603480 | en |
dc.identifier.isbn | 9789819603473 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64026 | - |
dc.description.abstract | <p>Machine scheduling serves as a vital function for industrial and service operations, and uncertainties always pose a significant challenge in real-world scheduling practices. In this paper, we propose to solve the stochastic machine scheduling problems with uncertain processing times by an improved prescriptive tree-based (IPTB) model. Our approach includes a novel way of combining historical processing time data with current scheduling constraints to strengthen the quality of historical decisions. We apply these improved historical decisions and incorporate an improved model for calculating the optimisation loss and accelerate the training of our IPTB model. Our trained model can directly prescribe downstream scheduling solutions with high robustness in the face of uncertainties. We evaluate the proposed IPTB method on a stochastic parallel machine scheduling problem originating from printed circuit board assembly lines. Through a series of comparative experiments, our findings demonstrate the IPTB method’s superior accuracy and robustness, highlighting its resilience in noisy data environments. Additionally, we interpret the model through feature importance analysis and examine the model’s behaviours under noisy conditions.</p> | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | 37th Australasian Joint Conference on Artificial Intelligence, AI 2024 Melbourne, VIC, Australia, November 25–29, 2024 Proceedings, Part I | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science | en |
dc.title | An Improved Prescriptive Tree-Based Model for Stochastic Parallel Machine Scheduling | en |
dc.type | Conference Publication | en |
dc.relation.conference | AI 2024: Advances in Artificial Intelligence | en |
dc.identifier.doi | 10.1007/978-981-96-0348-0_26 | en |
local.contributor.firstname | Siping | en |
local.contributor.firstname | Debiao | en |
local.contributor.firstname | Nasimul | en |
local.contributor.firstname | Kyle | en |
local.contributor.firstname | Raymond | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 25th - 29th November, 2024 | en |
local.conference.place | Melbourne, VIC, Australia | en |
local.publisher.place | Singapore | en |
local.format.startpage | 354 | en |
local.format.endpage | 365 | en |
local.series.issn | 1611-3349 | en |
local.series.issn | 0302-9743 | en |
local.series.number | 15442 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Chen | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Noman | en |
local.contributor.lastname | Harrison | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64026 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | An Improved Prescriptive Tree-Based Model for Stochastic Parallel Machine Scheduling | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.relation.doi | 10.1007/978-981-96-0348-0 | en |
local.conference.details | AI 2024: Advances in Artificial Intelligence, Melbourne, VIC, Australia, 25th - 29th November, 2024 | en |
local.search.author | Chen, Siping | en |
local.search.author | Li, Debiao | en |
local.search.author | Noman, Nasimul | en |
local.search.author | Harrison, Kyle | en |
local.search.author | Chiong, Raymond | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/2f87a345-14da-4e5f-a9ad-479566d3a89b | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.date.start | 2024-11-25 | - |
local.date.end | 2024-11-29 | - |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.date.moved | 2025-02-04 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.