Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Sipingen
dc.contributor.authorLi, Debiaoen
dc.contributor.authorGan, Xiqinen
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-11-09T08:33:17Z-
dc.date.available2024-11-09T08:33:17Z-
dc.date.issued2024-08-01-
dc.identifier.citationProceedings of the 2024 Genetic and Evolutionary Computation Conference Companion, p. 647-650en
dc.identifier.isbn9798400704956en
dc.identifier.urihttps://hdl.handle.net/1959.11/63833-
dc.description.abstract<p>Setup time is pivotal in printed circuit board (PCB) assembly line operations. However, PCB production encounters varying setup times due to multiple influencing factors. This paper addresses an uncertain setup time prediction problem in PCB assembly production lines. Unlike existing production time prediction models, our proposed approach integrates a comprehensive range of production features, not only with features related to PCBs but also production line operators, setup procedures and so on. To enhance model accuracy and mitigate overfitting, we implemented some data preprocessing phases and designed a random forest-integrated feature selection method. With the selected features, we used a light gradient boosting machine (LightGBM) as the predictive model and optimised its hyperparameters by a differential evolution (DE) algorithm. We validated our model's performance through extensive computational experiments based on real-world industrial data, focusing on feature selection efficiency and hyperparameter optimisation. The experimental results confirmed that our proposed DE-LightGBM can reduce redundant features and optimise the integral hyperparameters for model training. We also compared the DE-LightGBM model to some well-established machine learning approaches in different setup scenarios. The proposed DE-LightGBM outperformed other machine learning methods being compared, delivering accurate setup time predictions in both standard and complex scenarios.</p>en
dc.languageenen
dc.publisherThe Association for Computing Machineryen
dc.relation.ispartofProceedings of the 2024 Genetic and Evolutionary Computation Conference Companionen
dc.titleAn Optimised Light Gradient Boosting Machine Model for Setup Time Prediction in Electronic Production Linesen
dc.typeConference Publicationen
dc.relation.conferenceGECCO 2024: Genetic and Evolutionary Computation Conference Companionen
dc.identifier.doi10.1145/3638530.3654428en
dcterms.accessRightsBronzeen
local.contributor.firstnameSipingen
local.contributor.firstnameDebiaoen
local.contributor.firstnameXiqinen
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE5en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference14th - 18th July, 2024en
local.conference.placeMelbourne, Australiaen
local.publisher.placeUnited State of Americaen
local.format.startpage647en
local.format.endpage650en
local.access.fulltextYesen
local.contributor.lastnameChenen
local.contributor.lastnameLien
local.contributor.lastnameGanen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63833en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn Optimised Light Gradient Boosting Machine Model for Setup Time Prediction in Electronic Production Linesen
local.output.categorydescriptionE5 Conference Posteren
local.conference.detailsGECCO 2024: Genetic and Evolutionary Computation Conference Companion, Melbourne, Australia, 14th - 18th July, 2024en
local.search.authorChen, Sipingen
local.search.authorLi, Debiaoen
local.search.authorGan, Xiqinen
local.search.authorChiong, Raymonden
local.uneassociationYesen
local.atsiresearchNoen
local.conference.venueMelbourne, Australiaen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/9ba49245-c387-4983-bbc5-417d21dd864aen
local.subject.for20204602 Artificial intelligenceen
local.date.start2024-07-14-
local.date.end2024-07-18-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-11-21en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.