Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/63777
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Othman, Wael | en |
dc.contributor.author | Alfalasi, Wadha | en |
dc.contributor.author | Hussain, Tanveer | en |
dc.contributor.author | Tit, Nacir | en |
dc.date.accessioned | 2024-11-02T11:45:37Z | - |
dc.date.available | 2024-11-02T11:45:37Z | - |
dc.date.issued | 2024-09-15 | - |
dc.identifier.citation | Journal of Energy Storage, v.98 | en |
dc.identifier.issn | 2352-1538 | en |
dc.identifier.issn | 2352-152X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/63777 | - |
dc.description.abstract | <p>Exceptionally high energy density by mass, natural abundance, widespread applications, and environmental friendliness make hydrogen (H<sub>2</sub>) a front-runner among clean energy options. However, the transition towards clean and renewable energy applications and the actualization of H<sub>2</sub> economy require an efficient H<sub>2</sub> storage medium. Material-based H<sub>2</sub> storage is a viable option, as liquefaction and storage under pressure require ultralow temperature (− 253 ◦C) and tremendously high pressure (700 atm), respectively. In this work, we highlight the exceptional H<sub>2</sub> storage capabilities of recently synthesized boron monoxide (BO) monolayer functionalized with light metals (Li, Na, K, and Ca). Our computational approach, employing density functional theory (DFT), ab initio molecular dynamics (AIMD), and thermodynamic analysis, reveals promising results. We found that up to four metal dopants (Li, Na, K, and Ca) can be adsorbed onto BO monolayer with significantly strong binding energies (− 2.02, − 1.53, − 1.52, and − 2.24 eV per dopant, respectively). Importantly, these bindings surpass the cohesive counterparts of the parental metal bulks, consequently stabilizing the crystal integrities, as confirmed by AIMD simulations. Each metal dopant on BO efficiently adsorbs multiple H<sub>2</sub> molecules through electrostatic and van der Waals interactions. Interestingly, the metal-functionalized BO monolayers exhibit exceptionally high H<sub>2</sub> gravimetric capacities of 11.75, 9.52, 9.80, and 11.43 wt% for 4Li, 4Na, 4K, and 4Ca@BO, respectively. These promising capacities exceed the 5.50 wt% target set by the US Department of Energy for 2025. Following the same guidelines, the average binding energy per H<sub>2</sub> molecule is within the range of − 0.17 to − 0.32 eV. The adsorption and desorption of H<sub>2</sub> under practical working conditions are investigated by Langmuir adsorption model based statistical thermodynamic analysis, further supporting the potential of metal-functionalized BO monolayers for material-based H<sub>2</sub> storage applications.<p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Journal of Energy Storage | en |
dc.title | Light-metal functionalized boron monoxide monolayers as efficient hydrogen storage material: Insights from DFT simulations | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.est.2024.113014 | en |
local.contributor.firstname | Wael | en |
local.contributor.firstname | Wadha | en |
local.contributor.firstname | Tanveer | en |
local.contributor.firstname | Nacir | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | thussai3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 113014 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 98 | en |
local.title.subtitle | Insights from DFT simulations | en |
local.contributor.lastname | Othman | en |
local.contributor.lastname | Alfalasi | en |
local.contributor.lastname | Hussain | en |
local.contributor.lastname | Tit | en |
dc.identifier.staff | une-id:thussai3 | en |
local.profile.orcid | 0000-0003-1973-4584 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/63777 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Light-metal functionalized boron monoxide monolayers as efficient hydrogen storage material | en |
local.relation.fundingsourcenote | This work was supported by the National Water and Energy Center at the United Arab Emirates University under research grant No. 12R-162. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Othman, Wael | en |
local.search.author | Alfalasi, Wadha | en |
local.search.author | Hussain, Tanveer | en |
local.search.author | Tit, Nacir | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/c341dfe9-69bc-4758-9da2-172cf525ae23 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/c341dfe9-69bc-4758-9da2-172cf525ae23 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/c341dfe9-69bc-4758-9da2-172cf525ae23 | en |
local.subject.for2020 | 340701 Computational chemistry | en |
local.codeupdate.date | 2024-12-01T11:47:32.016 | en |
local.codeupdate.eperson | thussai3@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 3407 Theoretical and computational chemistry | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-11-06 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.