Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63777
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOthman, Waelen
dc.contributor.authorAlfalasi, Wadhaen
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorTit, Naciren
dc.date.accessioned2024-11-02T11:45:37Z-
dc.date.available2024-11-02T11:45:37Z-
dc.date.issued2024-09-15-
dc.identifier.citationJournal of Energy Storage, v.98en
dc.identifier.issn2352-1538en
dc.identifier.issn2352-152Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/63777-
dc.description.abstract<p>Exceptionally high energy density by mass, natural abundance, widespread applications, and environmental friendliness make hydrogen (H<sub>2</sub>) a front-runner among clean energy options. However, the transition towards clean and renewable energy applications and the actualization of H<sub>2</sub> economy require an efficient H<sub>2</sub> storage medium. Material-based H<sub>2</sub> storage is a viable option, as liquefaction and storage under pressure require ultralow temperature (− 253 ◦C) and tremendously high pressure (700 atm), respectively. In this work, we highlight the exceptional H<sub>2</sub> storage capabilities of recently synthesized boron monoxide (BO) monolayer functionalized with light metals (Li, Na, K, and Ca). Our computational approach, employing density functional theory (DFT), ab initio molecular dynamics (AIMD), and thermodynamic analysis, reveals promising results. We found that up to four metal dopants (Li, Na, K, and Ca) can be adsorbed onto BO monolayer with significantly strong binding energies (− 2.02, − 1.53, − 1.52, and − 2.24 eV per dopant, respectively). Importantly, these bindings surpass the cohesive counterparts of the parental metal bulks, consequently stabilizing the crystal integrities, as confirmed by AIMD simulations. Each metal dopant on BO efficiently adsorbs multiple H<sub>2</sub> molecules through electrostatic and van der Waals interactions. Interestingly, the metal-functionalized BO monolayers exhibit exceptionally high H<sub>2</sub> gravimetric capacities of 11.75, 9.52, 9.80, and 11.43 wt% for 4Li, 4Na, 4K, and 4Ca@BO, respectively. These promising capacities exceed the 5.50 wt% target set by the US Department of Energy for 2025. Following the same guidelines, the average binding energy per H<sub>2</sub> molecule is within the range of − 0.17 to − 0.32 eV. The adsorption and desorption of H<sub>2</sub> under practical working conditions are investigated by Langmuir adsorption model based statistical thermodynamic analysis, further supporting the potential of metal-functionalized BO monolayers for material-based H<sub>2</sub> storage applications.<p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Energy Storageen
dc.titleLight-metal functionalized boron monoxide monolayers as efficient hydrogen storage material: Insights from DFT simulationsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.est.2024.113014en
local.contributor.firstnameWaelen
local.contributor.firstnameWadhaen
local.contributor.firstnameTanveeren
local.contributor.firstnameNaciren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber113014en
local.peerreviewedYesen
local.identifier.volume98en
local.title.subtitleInsights from DFT simulationsen
local.contributor.lastnameOthmanen
local.contributor.lastnameAlfalasien
local.contributor.lastnameHussainen
local.contributor.lastnameTiten
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63777en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleLight-metal functionalized boron monoxide monolayers as efficient hydrogen storage materialen
local.relation.fundingsourcenoteThis work was supported by the National Water and Energy Center at the United Arab Emirates University under research grant No. 12R-162.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorOthman, Waelen
local.search.authorAlfalasi, Wadhaen
local.search.authorHussain, Tanveeren
local.search.authorTit, Naciren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/c341dfe9-69bc-4758-9da2-172cf525ae23en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/c341dfe9-69bc-4758-9da2-172cf525ae23en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c341dfe9-69bc-4758-9da2-172cf525ae23en
local.subject.for2020340701 Computational chemistryen
local.codeupdate.date2024-12-01T11:47:32.016en
local.codeupdate.epersonthussai3@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20203407 Theoretical and computational chemistryen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-11-06en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.