Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63775
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLokhande, A Cen
dc.contributor.authorKanagaraj, A Ben
dc.contributor.authorManagutti, Praveen Ben
dc.contributor.authorKaewmaraya, Ten
dc.contributor.authorHussain, Ten
dc.contributor.authorChoi, Den
dc.date.accessioned2024-11-02T11:45:32Z-
dc.date.available2024-11-02T11:45:32Z-
dc.date.issued2024-10-25-
dc.identifier.citationJournal of Alloys and Compounds, v.1003, p. 1-14en
dc.identifier.issn1873-4669en
dc.identifier.issn0925-8388en
dc.identifier.urihttps://hdl.handle.net/1959.11/63775-
dc.description.abstract<p>Lithium-ion capacitors (LICs) have garnered significant attention in recent years due to their ability to overcome the shortcomings of lithium-ion batteries (LIBs) and supercapacitors (SCs). Silicon (Si) stands out as a superior anode material for LICs due to its compelling attributes, including a high theoretical specific capacity (4200 mAh/g) and a low de-lithiation potential. Nevertheless, the inherent challenges of Si, such as low electrical conductivity and significant volume expansion (300 %), contribute to low electrochemical performance. To address this issue, a conductive carbon layer is introduced on Si using a simple and scalable approach. The resulting architecture, known as carbon-encapsulated Si (Si/C), not only improves electrical properties by enhancing Li<sup>+</sup> diffusion but also mitigates volume expansion, leading to enhanced capacity and cyclic stability. Theoretical findings based on density functional theory (DFT) support these enhancements, confirming improved interactive properties at an atomic scale, including low binding energy and accelerated charge transfer kinetics (higher valence charge transfer) between the Si/C electrode and Li ions. As a result, the 'binder-free' and flexible Si/C electrode exhibits a notable initial discharge capacity (3450 mAh/g at 0.05 C) with improved rate capability (3010 mAh/g at 0.1 C). When employed as an anode in LICs, the Si/C electrode exhibits outstanding performance, boasting a large energy density (222.29 Wh/kg), high power density (25 kW/kg), and superior cyclic stability (81.3 % over 10,000 cycles). These findings highlight the potential of the Si/C electrode as a formidable candidate for advanced energy storage applications.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Alloys and Compoundsen
dc.titleExperimental and theoretical investigation of silicon-based carbon composite electrode for high performance Li-ion capacitorsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jallcom.2024.175665en
local.contributor.firstnameA Cen
local.contributor.firstnameA Ben
local.contributor.firstnamePraveen Ben
local.contributor.firstnameTen
local.contributor.firstnameTen
local.contributor.firstnameDen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber175665en
local.format.startpage1en
local.format.endpage14en
local.peerreviewedYesen
local.identifier.volume1003en
local.contributor.lastnameLokhandeen
local.contributor.lastnameKanagarajen
local.contributor.lastnameManaguttien
local.contributor.lastnameKaewmarayaen
local.contributor.lastnameHussainen
local.contributor.lastnameChoien
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.orcidnullen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63775en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleExperimental and theoretical investigation of silicon-based carbon composite electrode for high performance Li-ion capacitorsen
local.relation.fundingsourcenoteThe authors would like to acknowledge the financial support of the United Arab Emirates ASPIRE, VRI Sustainability (Grid-scale Energy Storage) under Award No. 8434000442.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLokhande, A Cen
local.search.authorKanagaraj, A Ben
local.search.authorManagutti, Praveen Ben
local.search.authorKaewmaraya, Ten
local.search.authorHussain, Ten
local.search.authorChoi, Den
local.uneassociationYesen
dc.date.presented2024-10-25-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.year.presented2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/35016c72-1778-4b63-b203-35ea919604c0en
local.subject.for20203407 Theoretical and computational chemistryen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-11-06en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.