Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTasci, Iremen
dc.contributor.authorTasci, Buraken
dc.contributor.authorBarua, Probal Den
dc.contributor.authorDogan, Sengulen
dc.contributor.authorTuncer, Turkeren
dc.contributor.authorPalmer, Elizabeth Emmaen
dc.contributor.authorFujita, Hamidoen
dc.contributor.authorAcharya, U Rajendraen
dc.date.accessioned2024-10-23T04:50:29Z-
dc.date.available2024-10-23T04:50:29Z-
dc.date.issued2023-
dc.identifier.citationInformation Fusion, v.96, p. 252-268en
dc.identifier.issn1872-6305en
dc.identifier.issn1566-2535en
dc.identifier.urihttps://hdl.handle.net/1959.11/63661-
dc.description.abstract<p><i>Background:</i> Epilepsy is one of the most commonly seen neurologic disorders worldwide and has generally caused seizures. Electroencephalography (EEG) is widely used in seizure diagnosis. To detect epilepsy automatically, various machine learning (ML) models have been introduced in the literature, but the used EEG signal datasets for epilepsy detection are relatively small. Our main objective is to present a large EEG signal dataset and investigate the detection ability of a new hypercube pattern-based framework using the EEG signals.</p> <p><i>Material and method:</i> This study collected a large EEG signal dataset (10,356 EEG signals) from 121 participants. We proposed a new information fusion-based feature engineering framework to get high classification performance from this dataset. The dataset consists of 35 channels, and our proposed feature engineering model extracts features from each channel. A new hypercube-based feature extractor has been proposed to generate two feature vectors in the feature extraction phase. Various statistical parameters of the signals have been used to create a feature vector. Multilevel discrete wavelet transform (MDWT) has been applied to develop a multileveled feature extraction function, and seven feature vectors have been extracted. In this work, we have extracted 245 (=35 × 7) feature vectors, and the most valuable features from these vectors have been selected using the neighborhood component analysis (NCA) selector. Finally, these selected features were fed to the k nearest neighbors (kNN) classifier with the leave one subject out (LOSO) cross-validation (CV) strategy. These results have been voted/fused to obtain the highest classification performance. Results: In this work, we have attained 87.78% classification accuracy using voting these vectors and 79.07% with LOSO CV with the EEG signals.</p> <p><i>Conclusions:</i> The proposed fusion-based feature engineering model achieved satisfactory classification performance using the largest EEG signal datasets for epilepsy detection.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofInformation Fusionen
dc.titleEpilepsy detection in 121 patient populations using hypercube pattern from EEG signalsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.inffus.2023.03.022en
dc.subject.keywordsFusion -based feature engineeringen
dc.subject.keywordsFeature fusionen
dc.subject.keywordsFeature selectionen
dc.subject.keywordsEpilepsy detectionen
dc.subject.keywordsComputer Science, Artificial Intelligenceen
dc.subject.keywordsComputer Science, Theory & Methodsen
dc.subject.keywordsComputer Scienceen
dc.subject.keywordsHypercube patternen
local.contributor.firstnameIremen
local.contributor.firstnameBuraken
local.contributor.firstnameProbal Den
local.contributor.firstnameSengulen
local.contributor.firstnameTurkeren
local.contributor.firstnameElizabeth Emmaen
local.contributor.firstnameHamidoen
local.contributor.firstnameU Rajendraen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailpbarua2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage252en
local.format.endpage268en
local.peerreviewedYesen
local.identifier.volume96en
local.contributor.lastnameTascien
local.contributor.lastnameTascien
local.contributor.lastnameBaruaen
local.contributor.lastnameDoganen
local.contributor.lastnameTunceren
local.contributor.lastnamePalmeren
local.contributor.lastnameFujitaen
local.contributor.lastnameAcharyaen
dc.identifier.staffune-id:pbarua2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63661en
local.date.onlineversion2023-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEpilepsy detection in 121 patient populations using hypercube pattern from EEG signalsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTasci, Iremen
local.search.authorTasci, Buraken
local.search.authorBarua, Probal Den
local.search.authorDogan, Sengulen
local.search.authorTuncer, Turkeren
local.search.authorPalmer, Elizabeth Emmaen
local.search.authorFujita, Hamidoen
local.search.authorAcharya, U Rajendraen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c4f7755b-0f93-4086-baf9-5d2dbf499a37en
local.subject.for20204602 Artificial intelligenceen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.