Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlizadeh, Mohsenen
dc.contributor.authorZabihi, Hasanen
dc.contributor.authorRezaie, Fatemehen
dc.contributor.authorAsadzadeh, Asaden
dc.contributor.authorWolf, Isabelle Den
dc.contributor.authorK Langat, Philipen
dc.contributor.authorKhosravi, Imanen
dc.contributor.authorPour, Amin Beiranvanden
dc.contributor.authorNataj, Milad Mohammaden
dc.contributor.authorPradhan, Biswajeeten
dc.date.accessioned2024-10-22T04:02:55Z-
dc.date.available2024-10-22T04:02:55Z-
dc.date.issued2021-
dc.identifier.citationRemote Sensing, 13(22), p. 1-31en
dc.identifier.issn2072-4292en
dc.identifier.urihttps://hdl.handle.net/1959.11/63629-
dc.description.abstract<p>Tabriz city in NW Iran is a seismic-prone province with recurring devastating earthquakes that have resulted in heavy casualties and damages. This research developed a new computational framework to investigate four main dimensions of vulnerability (environmental, social, economic and physical). An Artificial Neural Network (ANN) Model and a SWOT-Quantitative Strategic Planning Matrix (QSPM) were applied. Firstly, a literature review was performed to explore indicators with significant impact on aforementioned dimensions of vulnerability to earthquakes. Next, the twenty identified indicators were analyzed in ArcGIS, a geographic information system (GIS) software, to map earthquake vulnerability. After classification and reclassification of the layers, standardized maps were presented as input to a Multilayer Perceptron (MLP) and Self-Organizing Map (SOM) neural network. The resulting Earthquake Vulnerability Maps (EVMs) showed five categories of vulnerability ranging from very high, to high, moderate, low and very low. Accordingly, out of the nine municipality zones in Tabriz city, Zone one was rated as the most vulnerable to earthquakes while Zone seven was rated as the least vulnerable. Vulnerability to earthquakes of residential buildings was also identified. To validate the results data were compared between a Multilayer Perceptron (MLP) and a Self-Organizing Map (SOM). The scatter plots showed strong correlations between the vulnerability ratings of the different zones achieved by the SOM and MLP. Finally, the hybrid SWOT-QSPM paradigm was proposed to identify and evaluate strategies for hazard mitigation of the most vulnerable zone. For hazard mitigation in this zone we recommend to diligently account for environmental phenomena in designing and locating of sites. The findings are useful for decision makers and government authorities to reconsider current natural disaster management strategies.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofRemote Sensingen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEarthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Modelen
dc.typeJournal Articleen
dc.identifier.doi10.3390/rs13224519en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsTabrizen
dc.subject.keywordsImaging Science & Photographic Technologyen
dc.subject.keywordsANNen
dc.subject.keywordsSWOTen
dc.subject.keywordsQSPMen
dc.subject.keywordsEnvironmental Sciences & Ecologyen
dc.subject.keywordsEnvironmental Sciencesen
dc.subject.keywordsGeosciences, Multidisciplinaryen
dc.subject.keywordsRemote Sensingen
dc.subject.keywordsGeologyen
dc.subject.keywordsearthquakeen
dc.subject.keywordsvulnerability assessmenten
dc.subject.keywordsurban areasen
local.contributor.firstnameMohsenen
local.contributor.firstnameHasanen
local.contributor.firstnameFatemehen
local.contributor.firstnameAsaden
local.contributor.firstnameIsabelle Den
local.contributor.firstnamePhilipen
local.contributor.firstnameImanen
local.contributor.firstnameAmin Beiranvanden
local.contributor.firstnameMilad Mohammaden
local.contributor.firstnameBiswajeeten
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailplangat2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber4519en
local.format.startpage1en
local.format.endpage31en
local.peerreviewedYesen
local.identifier.volume13en
local.identifier.issue22en
local.access.fulltextYesen
local.contributor.lastnameAlizadehen
local.contributor.lastnameZabihien
local.contributor.lastnameRezaieen
local.contributor.lastnameAsadzadehen
local.contributor.lastnameWolfen
local.contributor.lastnameK Langaten
local.contributor.lastnameKhosravien
local.contributor.lastnamePouren
local.contributor.lastnameNatajen
local.contributor.lastnamePradhanen
dc.identifier.staffune-id:plangat2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63629en
local.date.onlineversion2021-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEarthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Modelen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAlizadeh, Mohsenen
local.search.authorZabihi, Hasanen
local.search.authorRezaie, Fatemehen
local.search.authorAsadzadeh, Asaden
local.search.authorWolf, Isabelle Den
local.search.authorK Langat, Philipen
local.search.authorKhosravi, Imanen
local.search.authorPour, Amin Beiranvanden
local.search.authorNataj, Milad Mohammaden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/d68f9f11-893f-4574-8bb8-464c46f09e43en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2021en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/d68f9f11-893f-4574-8bb8-464c46f09e43en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/d68f9f11-893f-4574-8bb8-464c46f09e43en
local.subject.for20203709 Physical geography and environmental geoscienceen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EarthquakeKLangat2021JournalArticle.pdfPublished version2.82 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons