Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/63629
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alizadeh, Mohsen | en |
dc.contributor.author | Zabihi, Hasan | en |
dc.contributor.author | Rezaie, Fatemeh | en |
dc.contributor.author | Asadzadeh, Asad | en |
dc.contributor.author | Wolf, Isabelle D | en |
dc.contributor.author | K Langat, Philip | en |
dc.contributor.author | Khosravi, Iman | en |
dc.contributor.author | Pour, Amin Beiranvand | en |
dc.contributor.author | Nataj, Milad Mohammad | en |
dc.contributor.author | Pradhan, Biswajeet | en |
dc.date.accessioned | 2024-10-22T04:02:55Z | - |
dc.date.available | 2024-10-22T04:02:55Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Remote Sensing, 13(22), p. 1-31 | en |
dc.identifier.issn | 2072-4292 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/63629 | - |
dc.description.abstract | <p>Tabriz city in NW Iran is a seismic-prone province with recurring devastating earthquakes that have resulted in heavy casualties and damages. This research developed a new computational framework to investigate four main dimensions of vulnerability (environmental, social, economic and physical). An Artificial Neural Network (ANN) Model and a SWOT-Quantitative Strategic Planning Matrix (QSPM) were applied. Firstly, a literature review was performed to explore indicators with significant impact on aforementioned dimensions of vulnerability to earthquakes. Next, the twenty identified indicators were analyzed in ArcGIS, a geographic information system (GIS) software, to map earthquake vulnerability. After classification and reclassification of the layers, standardized maps were presented as input to a Multilayer Perceptron (MLP) and Self-Organizing Map (SOM) neural network. The resulting Earthquake Vulnerability Maps (EVMs) showed five categories of vulnerability ranging from very high, to high, moderate, low and very low. Accordingly, out of the nine municipality zones in Tabriz city, Zone one was rated as the most vulnerable to earthquakes while Zone seven was rated as the least vulnerable. Vulnerability to earthquakes of residential buildings was also identified. To validate the results data were compared between a Multilayer Perceptron (MLP) and a Self-Organizing Map (SOM). The scatter plots showed strong correlations between the vulnerability ratings of the different zones achieved by the SOM and MLP. Finally, the hybrid SWOT-QSPM paradigm was proposed to identify and evaluate strategies for hazard mitigation of the most vulnerable zone. For hazard mitigation in this zone we recommend to diligently account for environmental phenomena in designing and locating of sites. The findings are useful for decision makers and government authorities to reconsider current natural disaster management strategies.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Remote Sensing | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Earthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Model | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/rs13224519 | en |
dcterms.accessRights | UNE Green | en |
dc.subject.keywords | Tabriz | en |
dc.subject.keywords | Imaging Science & Photographic Technology | en |
dc.subject.keywords | ANN | en |
dc.subject.keywords | SWOT | en |
dc.subject.keywords | QSPM | en |
dc.subject.keywords | Environmental Sciences & Ecology | en |
dc.subject.keywords | Environmental Sciences | en |
dc.subject.keywords | Geosciences, Multidisciplinary | en |
dc.subject.keywords | Remote Sensing | en |
dc.subject.keywords | Geology | en |
dc.subject.keywords | earthquake | en |
dc.subject.keywords | vulnerability assessment | en |
dc.subject.keywords | urban areas | en |
local.contributor.firstname | Mohsen | en |
local.contributor.firstname | Hasan | en |
local.contributor.firstname | Fatemeh | en |
local.contributor.firstname | Asad | en |
local.contributor.firstname | Isabelle D | en |
local.contributor.firstname | Philip | en |
local.contributor.firstname | Iman | en |
local.contributor.firstname | Amin Beiranvand | en |
local.contributor.firstname | Milad Mohammad | en |
local.contributor.firstname | Biswajeet | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | plangat2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 4519 | en |
local.format.startpage | 1 | en |
local.format.endpage | 31 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 13 | en |
local.identifier.issue | 22 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Alizadeh | en |
local.contributor.lastname | Zabihi | en |
local.contributor.lastname | Rezaie | en |
local.contributor.lastname | Asadzadeh | en |
local.contributor.lastname | Wolf | en |
local.contributor.lastname | K Langat | en |
local.contributor.lastname | Khosravi | en |
local.contributor.lastname | Pour | en |
local.contributor.lastname | Nataj | en |
local.contributor.lastname | Pradhan | en |
dc.identifier.staff | une-id:plangat2 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/63629 | en |
local.date.onlineversion | 2021 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Earthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Model | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Alizadeh, Mohsen | en |
local.search.author | Zabihi, Hasan | en |
local.search.author | Rezaie, Fatemeh | en |
local.search.author | Asadzadeh, Asad | en |
local.search.author | Wolf, Isabelle D | en |
local.search.author | K Langat, Philip | en |
local.search.author | Khosravi, Iman | en |
local.search.author | Pour, Amin Beiranvand | en |
local.search.author | Nataj, Milad Mohammad | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/d68f9f11-893f-4574-8bb8-464c46f09e43 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/d68f9f11-893f-4574-8bb8-464c46f09e43 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/d68f9f11-893f-4574-8bb8-464c46f09e43 | en |
local.subject.for2020 | 3709 Physical geography and environmental geoscience | en |
local.subject.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/EarthquakeKLangat2021JournalArticle.pdf | Published version | 2.82 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License