Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/63333
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hettiarachchi, Chirath | en |
dc.contributor.author | Vlieger, Robin | en |
dc.contributor.author | Ge, Wenbo | en |
dc.contributor.author | Apthorp, Deborah | en |
dc.contributor.author | Daskalaki, Elena | en |
dc.contributor.author | Brüstle, Anne | en |
dc.contributor.author | Suominen, Hanna | en |
dc.date.accessioned | 2024-10-05T09:40:29Z | - |
dc.date.available | 2024-10-05T09:40:29Z | - |
dc.identifier.citation | Studies in Health Technology and Informatics, v.24, p. 138-143 | en |
dc.identifier.issn | 0926-9630 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/63333 | - |
dc.description.abstract | <p>Wearable sensors, among other informatics solutions, are readily accessible to enable noninvasive remote monitoring in healthcare. While providing a wealth of data, the wide variety of such sensing systems and the differing implementations of the same or similar sensors by different developers complicate comparisons of collected data. An online application as a platform technology that provides uniform methods for analysing balance data is presented as a case study. The development of balance problems is common in neurodegenerative conditions, leading to falls and a reduced quality of life. While balance can be assessed using, for example, perturbation tests, sensors offer a more quantitative and scalable way. Researchers can adjust the platform to integrate the sensors of their choice or upload data and then preprocess, featurise, analyse, and visualise them. This eases performing comparative analyses across the sensors and datasets through a reduction of heterogeneity and facilitates easy integration of machine learning and other advanced data analytics, thereby targeting personalising medical insights.</p> | en |
dc.language | en | en |
dc.publisher | IOS Press | en |
dc.relation.ispartof | Studies in Health Technology and Informatics | en |
dc.title | Optimising Personalised Medical Insights by Introducing a Scalable Health Informatics Application for Sensor Data Extraction, Preprocessing, and Analysis | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3233/SHTI240905 | en |
local.contributor.firstname | Chirath | en |
local.contributor.firstname | Robin | en |
local.contributor.firstname | Wenbo | en |
local.contributor.firstname | Deborah | en |
local.contributor.firstname | Elena | en |
local.contributor.firstname | Anne | en |
local.contributor.firstname | Hanna | en |
local.profile.school | School of Psychology and Behavioural Science | en |
local.profile.school | School of Psychology | en |
local.profile.email | rvlieger@une.edu.au | en |
local.profile.email | dapthorp@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 318 | en |
local.format.startpage | 138 | en |
local.format.endpage | 143 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 24 | en |
local.contributor.lastname | Hettiarachchi | en |
local.contributor.lastname | Vlieger | en |
local.contributor.lastname | Ge | en |
local.contributor.lastname | Apthorp | en |
local.contributor.lastname | Daskalaki | en |
local.contributor.lastname | Brüstle | en |
local.contributor.lastname | Suominen | en |
dc.identifier.staff | une-id:rvlieger | en |
dc.identifier.staff | une-id:dapthorp | en |
local.profile.orcid | 0000-0001-5785-024X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/63333 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Optimising Personalised Medical Insights by Introducing a Scalable Health Informatics Application for Sensor Data Extraction, Preprocessing, and Analysis | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Hettiarachchi, Chirath | en |
local.search.author | Vlieger, Robin | en |
local.search.author | Ge, Wenbo | en |
local.search.author | Apthorp, Deborah | en |
local.search.author | Daskalaki, Elena | en |
local.search.author | Brüstle, Anne | en |
local.search.author | Suominen, Hanna | en |
local.uneassociation | Yes | en |
dc.date.presented | 2024 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.presented | 2024 | en |
local.subject.for2020 | 5204 Cognitive and computational psychology | en |
local.subject.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-10-11 | en |
Appears in Collections: | Journal Article School of Psychology |
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.