Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/62981
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aslam, Saad | en |
dc.contributor.author | Alam, Fakhrul | en |
dc.contributor.author | Hasan, Syed Faraz | en |
dc.contributor.author | Rashid, Mohammad A | en |
dc.date.accessioned | 2024-09-18T06:21:07Z | - |
dc.date.available | 2024-09-18T06:21:07Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | IEEE Access, v.9, p. 16114-16132 | en |
dc.identifier.issn | 2169-3536 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/62981 | - |
dc.description.abstract | <p>Clustering has been suggested as an effective technique to enhance the performance of multicasting networks. Typically, a cluster head is selected to broadcast the cached content to its cluster members utilizing Device-to-Device (D2D) communication. However, some users can attain better performance by being connected with the Evolved Node B (eNB) rather than being in the clusters. In this article, we apply machine learning algorithms, namely Support Vector Machine, Random Forest, and Deep Neural Network to identify the users that should be serviced by the eNB. We therefore propose a mixed-mode content distribution scheme where the cluster heads and eNB service the two segregated groups of users to improve the performance of existing clustering schemes. A D2D-enabled multicasting scenario has been set up to perform a comprehensive simulation study that demonstrates that by utilizing the mixed-mode scheme, the performance of individual users, as well as the whole network, improve significantly in terms of throughput, energy consumption, and fairness. This study also demonstrates the trade-off between eNB loading and performance improvement for various parameters.</p> | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers | en |
dc.relation.ispartof | IEEE Access | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | A Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networks | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1109/ACCESS.2021.3053045 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Saad | en |
local.contributor.firstname | Fakhrul | en |
local.contributor.firstname | Syed Faraz | en |
local.contributor.firstname | Mohammad A | en |
local.profile.school | Research Services | en |
local.profile.email | shasan3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 16114 | en |
local.format.endpage | 16132 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 9 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Aslam | en |
local.contributor.lastname | Alam | en |
local.contributor.lastname | Hasan | en |
local.contributor.lastname | Rashid | en |
dc.identifier.staff | une-id:shasan3 | en |
local.profile.orcid | 0009-0006-5345-2790 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/62981 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networks | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Aslam, Saad | en |
local.search.author | Alam, Fakhrul | en |
local.search.author | Hasan, Syed Faraz | en |
local.search.author | Rashid, Mohammad A | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/e294e228-f93e-4e37-ad83-57da072910c0 | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.year.presented | 2024 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/e294e228-f93e-4e37-ad83-57da072910c0 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/e294e228-f93e-4e37-ad83-57da072910c0 | en |
local.subject.for2020 | 4006 Communications engineering | en |
local.subject.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-09-19 | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AMachineHassan2021JournalArticle.pdf | Published version | 3.37 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License