Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAslam, Saaden
dc.contributor.authorAlam, Fakhrulen
dc.contributor.authorHasan, Syed Farazen
dc.contributor.authorRashid, Mohammad Aen
dc.date.accessioned2024-09-18T06:21:07Z-
dc.date.available2024-09-18T06:21:07Z-
dc.date.issued2024-
dc.identifier.citationIEEE Access, v.9, p. 16114-16132en
dc.identifier.issn2169-3536en
dc.identifier.urihttps://hdl.handle.net/1959.11/62981-
dc.description.abstract<p>Clustering has been suggested as an effective technique to enhance the performance of multicasting networks. Typically, a cluster head is selected to broadcast the cached content to its cluster members utilizing Device-to-Device (D2D) communication. However, some users can attain better performance by being connected with the Evolved Node B (eNB) rather than being in the clusters. In this article, we apply machine learning algorithms, namely Support Vector Machine, Random Forest, and Deep Neural Network to identify the users that should be serviced by the eNB. We therefore propose a mixed-mode content distribution scheme where the cluster heads and eNB service the two segregated groups of users to improve the performance of existing clustering schemes. A D2D-enabled multicasting scenario has been set up to perform a comprehensive simulation study that demonstrates that by utilizing the mixed-mode scheme, the performance of individual users, as well as the whole network, improve significantly in terms of throughput, energy consumption, and fairness. This study also demonstrates the trade-off between eNB loading and performance improvement for various parameters.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Accessen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networksen
dc.typeJournal Articleen
dc.identifier.doi10.1109/ACCESS.2021.3053045en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameSaaden
local.contributor.firstnameFakhrulen
local.contributor.firstnameSyed Farazen
local.contributor.firstnameMohammad Aen
local.profile.schoolResearch Servicesen
local.profile.emailshasan3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage16114en
local.format.endpage16132en
local.peerreviewedYesen
local.identifier.volume9en
local.access.fulltextYesen
local.contributor.lastnameAslamen
local.contributor.lastnameAlamen
local.contributor.lastnameHasanen
local.contributor.lastnameRashiden
dc.identifier.staffune-id:shasan3en
local.profile.orcid0009-0006-5345-2790en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62981en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networksen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAslam, Saaden
local.search.authorAlam, Fakhrulen
local.search.authorHasan, Syed Farazen
local.search.authorRashid, Mohammad Aen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/e294e228-f93e-4e37-ad83-57da072910c0en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.year.presented2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/e294e228-f93e-4e37-ad83-57da072910c0en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/e294e228-f93e-4e37-ad83-57da072910c0en
local.subject.for20204006 Communications engineeringen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-09-19en
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AMachineHassan2021JournalArticle.pdfPublished version3.37 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons