Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrielsma, Michael Jen
dc.contributor.authorLove, Jamieen
dc.contributor.authorTaylor, Bharaten
dc.contributor.authorThapa, Rajeshen
dc.contributor.authorWilliams, Kristen Jen
dc.date.accessioned2024-09-10T02:44:34Z-
dc.date.available2024-09-10T02:44:34Z-
dc.date.issued2022-
dc.identifier.citationEcological Modelling, v.465, p. 1-14en
dc.identifier.issn1872-7026en
dc.identifier.issn0304-3800en
dc.identifier.urihttps://hdl.handle.net/1959.11/62723-
dc.description.abstract<p>Graph-theoretic approaches are commonly used to map landscape connectivity networks to inform environmental management priorities. We developed the new General Landscape Connectivity Model (GLCM), as a operationally practical way of evaluating and mapping habitat networks to inform conservation priorities and plans. GLCM is built on two complementary metapopulation ecology-based measures: Neighbourhood habitat area (Ni) and habitat link value (Li). Ni is a measure of the amount of connected habitat to each location considering its cross-scale connectivity to neighbouring habitat. The remaining Ni across a region can be reported as an indicator of Ecological Carrying Capacity for wildlife (plants and animals). Li at any location is its contribution to the landscape connectivity of the study region (i.e. which is reported as summed Ni across a region) by virtue of providing the 'least-cost' linkages between concentrations of habitat. Mapped Li provides valuable insights into the pattern of a region's habitat network, highlighting functioning habitat corridors and stepping-stones, and candidate areas for conservation and restoration. Due to its foundations in ecological theory and its parsimonious design, GLCM addresses a number of criteria we list as important, while addressing criticisms often levelled at graph-theoretical approaches. We present results for three south-east Australian casestudies using continuous-value ecological condition surfaces as input. However, a simple habitat/non-habitat binary surface approximating a threshold ecological condition can also be used. GLCM has been designed to specifically address the need for generic landscape connectivity assessment at regional scales, and broader. It incorporates connectivity analyses across a range of spatial scales and granularities relevant to broad ranges of taxa and movement processes (foraging, dispersal and migration). Successively finer spatial scales are more intensively sampled based on a simple scaling-law. This approach allows analysis resolutions to be determined by data-driven ecological relevance rather than by processing limitations. The operational advantages of GLCM means that landscape connectivity assessments can be readily updated with refined or changed inputs including time-series remote sensing of land cover, or applied to alternative scenarios of land use, ecological restoration, climate projections or combinations of these.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofEcological Modellingen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleGeneral Landscape Connectivity Model (GLCM): a new way to map whole of landscape biodiversity functional connectivity for operational planning and reportingen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ecolmodel.2021.109858en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsscaling lawen
dc.subject.keywordsEcological carrying capacityen
dc.subject.keywordsreportingen
dc.subject.keywordsmultiple scalesen
dc.subject.keywordsEcologyen
dc.subject.keywordsEnvironmental Sciences & Ecologyen
dc.subject.keywordslandscape connectivityen
local.contributor.firstnameMichael Jen
local.contributor.firstnameJamieen
local.contributor.firstnameBharaten
local.contributor.firstnameRajeshen
local.contributor.firstnameKristen Jen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Educationen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailjlove8@une.edu.auen
local.profile.emailbtaylo26@une.edu.auen
local.profile.emailrthapa4@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeAmsterdam, The Netherlandsen
local.identifier.runningnumber109858en
local.format.startpage1en
local.format.endpage14en
local.peerreviewedYesen
local.identifier.volume465en
local.title.subtitlea new way to map whole of landscape biodiversity functional connectivity for operational planning and reportingen
local.access.fulltextYesen
local.contributor.lastnameDrielsmaen
local.contributor.lastnameLoveen
local.contributor.lastnameTayloren
local.contributor.lastnameThapaen
local.contributor.lastnameWilliamsen
dc.identifier.staffune-id:jlove8en
dc.identifier.staffune-id:btaylo26en
dc.identifier.staffune-id:rthapa4en
local.profile.orcid0000-0002-1624-0901en
local.profile.orcid0000-0002-5931-7147en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62723en
local.date.onlineversion2022-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGeneral Landscape Connectivity Model (GLCM)en
local.relation.fundingsourcenoteKJW acknowledges funding provided through the NSW Biodiversity Indicator Program for case study 2. Case study 2b was funded by the NSW government's Greening our City program.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorDrielsma, Michael Jen
local.search.authorLove, Jamieen
local.search.authorTaylor, Bharaten
local.search.authorThapa, Rajeshen
local.search.authorWilliams, Kristen Jen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/666dab84-ffb7-4708-861f-9e83309872c0en
local.subject.for20203801 Applied economicsen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons