Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/62192
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brankovic, Ljiljana | en |
dc.contributor.author | Miller, Mirka | en |
dc.contributor.author | Plesník, Jan | en |
dc.contributor.author | Ryan, Joseph | en |
dc.contributor.author | Siran, Jozef | en |
dc.date.accessioned | 2024-08-16T00:46:31Z | - |
dc.date.available | 2024-08-16T00:46:31Z | - |
dc.date.issued | 1998 | - |
dc.identifier.citation | Australasian Journal of Combinatorics, v.18, p. 65-76 | en |
dc.identifier.issn | 2202-3518 | en |
dc.identifier.issn | 1034-4942 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/62192 | - |
dc.description.abstract | <p>The degree/diameter problem is to determine the largest order of a graph with given degree and diameter. Although many constructions have been considered in this area, a powerful one - the covering space construction -seems to have been overlooked. Paradoxically, many examples of graphs that are known as currently largest graphs for some degrees and diameters can be obtained by the covering space construction.</p> <p>The objective of the paper is to revisit the degree/diameter problem from this new perspective. The large covering graphs (called <i>lifts</i>) of small <i>base graphs</i> are described by means of the so-called <i>voltage assignments</i> on base graphs in finite groups. We do not try to find special graphs and special voltage assignments which would provide further record examples for given degree and diameter. Instead, we are interested in the potential of this method when applied to arbitrary graphs and groups. We derive a fairly general upper bound on the diameter of a lift in terms of the properties of the base voltage graph and discuss related questions.</p> | en |
dc.language | en | en |
dc.publisher | Centre for Discrete Mathematics & Computing | en |
dc.relation.ispartof | Australasian Journal of Combinatorics | en |
dc.title | Large graphs with small degree and diameter: A voltage assignment approach | en |
dc.type | Journal Article | en |
dcterms.accessRights | Gold | en |
local.contributor.firstname | Ljiljana | en |
local.contributor.firstname | Mirka | en |
local.contributor.firstname | Jan | en |
local.contributor.firstname | Joseph | en |
local.contributor.firstname | Jozef | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | lbrankov@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Australia | en |
local.format.startpage | 65 | en |
local.format.endpage | 76 | en |
local.url.open | https://ajc.maths.uq.edu.au/pdf/18/ocr-ajc-v18-p65.pdf | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 18 | en |
local.title.subtitle | A voltage assignment approach | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Brankovic | en |
local.contributor.lastname | Miller | en |
local.contributor.lastname | Plesník | en |
local.contributor.lastname | Ryan | en |
local.contributor.lastname | Siran | en |
dc.identifier.staff | une-id:lbrankov | en |
local.profile.orcid | 0000-0002-5056-4627 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/62192 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Large graphs with small degree and diameter | en |
local.relation.fundingsourcenote | This research began when J. Plesnik and J. SinlIl were visiting the Department of Computer Science of the University of Newcastle NSW Australia in 1995, supported by a small ARC grant. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.url | https://ajc.maths.uq.edu.au/?page=home | en |
local.search.author | Brankovic, Ljiljana | en |
local.search.author | Miller, Mirka | en |
local.search.author | Plesník, Jan | en |
local.search.author | Ryan, Joseph | en |
local.search.author | Siran, Jozef | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/56c78894-fc9e-46d1-878e-bbe05c8eeb3b | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 1998 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/56c78894-fc9e-46d1-878e-bbe05c8eeb3b | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/56c78894-fc9e-46d1-878e-bbe05c8eeb3b | en |
local.subject.for2020 | 490404 Combinatorics and discrete mathematics (excl. physical combinatorics) | en |
local.subject.seo2020 | 229999 Other information and communication services not elsewhere classified | en |
local.profile.affiliationtype | Pre-UNE | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format | |
---|---|---|---|
openpublished/LargeGraphsBrankovic1998JournalArticle.pdf | 1.32 MB | Adobe PDF Download Adobe | View/Open |
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.