Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiggins, Helenen
dc.contributor.authorBrankovic, Ljiljanaen
dc.date.accessioned2024-08-08T01:51:21Z-
dc.date.available2024-08-08T01:51:21Z-
dc.date.issued2012-
dc.identifier.citationConferences in Research and Practice in Information Technology Series, v.134, p. 139-148en
dc.identifier.isbn9781921770142en
dc.identifier.urihttps://hdl.handle.net/1959.11/62016-
dc.description.abstract<p>Privacy preserving data mining and statistical disclosure control have received a great deal of attention during the last few decades. Existing techniques are generally classified as restriction and data modification. Within data modification techniques noise addition has been one of the most widely studied but has traditionally been applied to numerical values, where the measure of similarity is straightforward. In this paper we introduce <i>VICUS</i>, a novel privacy preserving technique that adds noise to categorical data. Experimental evaluation indicates that <i>VICUS</i> performs better than random noise addition both in terms of security and data quality.</p>en
dc.languageenen
dc.publisherAustralian Computer Society, Incen
dc.relation.ispartofConferences in Research and Practice in Information Technology Seriesen
dc.titleVICUS - A noise addition technique for categorical dataen
dc.typeConference Publicationen
dc.relation.conferenceAusDM 2012: 10th Australasian Data Mining (AusDM) Conferenceen
local.contributor.firstnameHelenen
local.contributor.firstnameLjiljanaen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillbrankov@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference5th to 7th of December, 2012en
local.conference.placeAustraliaen
local.publisher.placeAustraliaen
local.format.startpage139en
local.format.endpage148en
local.peerreviewedYesen
local.identifier.volume134en
local.contributor.lastnameGigginsen
local.contributor.lastnameBrankovicen
dc.identifier.staffune-id:lbrankoven
local.profile.orcid0000-0002-5056-4627en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62016en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleVICUS - A noise addition technique for categorical dataen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.relation.urlhttps://dl.acm.org/doi/proceedings/10.5555/2525373en
local.conference.detailsAusDM 2012: 10th Australasian Data Mining (AusDM) Conference, Australia, 5th to 7th of December, 2012en
local.search.authorGiggins, Helenen
local.search.authorBrankovic, Ljiljanaen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2012en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/7e5703d8-98c5-4553-8072-0497c07f61bden
local.subject.for2020460402 Data and information privacyen
local.subject.seo2020220499 Information systems, technologies and services not elsewhere classifieden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

Page view(s)

116
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.