Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62008
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIslam, Md Zahidulen
dc.contributor.authorBrankovic, Ljiljanaen
dc.date.accessioned2024-08-07T23:46:26Z-
dc.date.available2024-08-07T23:46:26Z-
dc.date.issued2011-12-
dc.identifier.citationKnowledge-Based Systems, 24(8), p. 1214-1223en
dc.identifier.issn1872-7409en
dc.identifier.issn0950-7051en
dc.identifier.urihttps://hdl.handle.net/1959.11/62008-
dc.description.abstract<p>During the whole process of data mining (from data collection to knowledge discovery) various sensitive data get exposed to several parties including data collectors, cleaners, preprocessors, miners and decision-makers. The exposure of sensitive data can potentially lead to breach of individual privacy. Therefore, many privacy preserving techniques have been proposed recently. In this paper we present a framework that uses a few novel noise addition techniques for protecting individual privacy while maintaining a high data quality. We add noise to all attributes, both numerical and categorical. We present a novel technique for clustering categorical values and use it for noise addition purpose. A security analysis is also presented for measuring the security level of a data set.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofKnowledge-Based Systemsen
dc.titlePrivacy preserving data mining: A noise addition framework using a novel clustering techniqueen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.knosys.2011.05.011en
local.contributor.firstnameMd Zahidulen
local.contributor.firstnameLjiljanaen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillbrankov@une.edu.auen
local.output.categoryC1en
local.grant.numberDG-DP0452182en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage1214en
local.format.endpage1223en
local.peerreviewedYesen
local.identifier.volume24en
local.identifier.issue8en
local.title.subtitleA noise addition framework using a novel clustering techniqueen
local.contributor.lastnameIslamen
local.contributor.lastnameBrankovicen
dc.identifier.staffune-id:lbrankoven
local.profile.orcid0000-0002-5056-4627en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62008en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePrivacy preserving data miningen
local.relation.fundingsourcenoteSeed Grant, Faculty of Business, Charles Sturt University, Australiaen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DG-DP0452182en
local.search.authorIslam, Md Zahidulen
local.search.authorBrankovic, Ljiljanaen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2011en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/8ac60d92-97b6-4906-b252-faeb151cac20en
local.subject.for2020460402 Data and information privacyen
local.subject.for2020460502 Data mining and knowledge discoveryen
local.subject.seo2020220499 Information systems, technologies and services not elsewhere classifieden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

87
checked on Nov 9, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.