Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/62008
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Islam, Md Zahidul | en |
dc.contributor.author | Brankovic, Ljiljana | en |
dc.date.accessioned | 2024-08-07T23:46:26Z | - |
dc.date.available | 2024-08-07T23:46:26Z | - |
dc.date.issued | 2011-12 | - |
dc.identifier.citation | Knowledge-Based Systems, 24(8), p. 1214-1223 | en |
dc.identifier.issn | 1872-7409 | en |
dc.identifier.issn | 0950-7051 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/62008 | - |
dc.description.abstract | <p>During the whole process of data mining (from data collection to knowledge discovery) various sensitive data get exposed to several parties including data collectors, cleaners, preprocessors, miners and decision-makers. The exposure of sensitive data can potentially lead to breach of individual privacy. Therefore, many privacy preserving techniques have been proposed recently. In this paper we present a framework that uses a few novel noise addition techniques for protecting individual privacy while maintaining a high data quality. We add noise to all attributes, both numerical and categorical. We present a novel technique for clustering categorical values and use it for noise addition purpose. A security analysis is also presented for measuring the security level of a data set.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Knowledge-Based Systems | en |
dc.title | Privacy preserving data mining: A noise addition framework using a novel clustering technique | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.knosys.2011.05.011 | en |
local.contributor.firstname | Md Zahidul | en |
local.contributor.firstname | Ljiljana | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | lbrankov@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DG-DP0452182 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.format.startpage | 1214 | en |
local.format.endpage | 1223 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 24 | en |
local.identifier.issue | 8 | en |
local.title.subtitle | A noise addition framework using a novel clustering technique | en |
local.contributor.lastname | Islam | en |
local.contributor.lastname | Brankovic | en |
dc.identifier.staff | une-id:lbrankov | en |
local.profile.orcid | 0000-0002-5056-4627 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/62008 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Privacy preserving data mining | en |
local.relation.fundingsourcenote | Seed Grant, Faculty of Business, Charles Sturt University, Australia | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DG-DP0452182 | en |
local.search.author | Islam, Md Zahidul | en |
local.search.author | Brankovic, Ljiljana | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2011 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/8ac60d92-97b6-4906-b252-faeb151cac20 | en |
local.subject.for2020 | 460402 Data and information privacy | en |
local.subject.for2020 | 460502 Data mining and knowledge discovery | en |
local.subject.seo2020 | 220499 Information systems, technologies and services not elsewhere classified | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
87
checked on Nov 9, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.