Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61991
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShepley, Andrew Jen
dc.contributor.authorFalzon, Gregoryen
dc.contributor.authorKwan, Paulen
dc.contributor.authorBrankovic, Ljiljanaen
dc.date.accessioned2024-08-07T03:10:53Z-
dc.date.available2024-08-07T03:10:53Z-
dc.date.issued2023-10-
dc.identifier.citationIEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10), p. 11561-11574en
dc.identifier.issn1939-3539en
dc.identifier.issn0162-8828en
dc.identifier.issn2160-9292en
dc.identifier.urihttps://hdl.handle.net/1959.11/61991-
dc.description.abstract<p>Confluence is a novel non-Intersection over Union (IoU) alternative to Non-Maxima Suppression (NMS) in bounding box post-processing in object detection. It overcomes the inherent limitations of IoU-based NMS variants to provide a more stable, consistent predictor of bounding box clustering by using a normalized Manhattan Distance inspired proximity metric to represent bounding box clustering. Unlike Greedy and Soft NMS, it does not rely solely on classification confidence scores to select optimal bounding boxes, instead selecting the box which is closest to every other box within a given cluster and removing highly confluent neighboring boxes. Confluence is experimentally validated on the MS COCO and CrowdHuman benchmarks, improving Average Precision by 0.2--2.7% and 1--3.8% respectively and Average Recall by 1.3--9.3 and 2.4--7.3% when compared against Greedy and Soft-NMS variants. Quantitative results are supported by extensive qualitative analysis and threshold sensitivity analysis experiments support the conclusion that Confluence is more robust than NMS variants. Confluence represents a paradigm shift in bounding box processing, with potential to replace IoU in bounding box regression processes.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligenceen
dc.titleConfluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detectionen
dc.typeJournal Articleen
dc.identifier.doi10.1109/TPAMI.2023.3273210en
local.contributor.firstnameAndrew Jen
local.contributor.firstnameGregoryen
local.contributor.firstnamePaulen
local.contributor.firstnameLjiljanaen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailasheple2@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.profile.emaillbrankov@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited State of Americaen
local.format.startpage11561en
local.format.endpage11574en
local.peerreviewedYesen
local.identifier.volume45en
local.identifier.issue10en
local.title.subtitleA Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detectionen
local.contributor.lastnameShepleyen
local.contributor.lastnameFalzonen
local.contributor.lastnameKwanen
local.contributor.lastnameBrankovicen
dc.identifier.staffune-id:asheple2en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:wkwan2en
dc.identifier.staffune-id:lbrankoven
local.profile.orcid0000-0001-7511-4967en
local.profile.orcid0000-0002-1989-9357en
local.profile.orcid0000-0002-5056-4627en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61991en
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleConfluenceen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorShepley, Andrew Jen
local.search.authorFalzon, Gregoryen
local.search.authorKwan, Paulen
local.search.authorBrankovic, Ljiljanaen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.subject.for2020460304 Computer visionen
local.subject.seo2020220499 Information systems, technologies and services not elsewhere classifieden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 2, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.