Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61991
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shepley, Andrew J | en |
dc.contributor.author | Falzon, Gregory | en |
dc.contributor.author | Kwan, Paul | en |
dc.contributor.author | Brankovic, Ljiljana | en |
dc.date.accessioned | 2024-08-07T03:10:53Z | - |
dc.date.available | 2024-08-07T03:10:53Z | - |
dc.date.issued | 2023-10 | - |
dc.identifier.citation | IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10), p. 11561-11574 | en |
dc.identifier.issn | 1939-3539 | en |
dc.identifier.issn | 0162-8828 | en |
dc.identifier.issn | 2160-9292 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61991 | - |
dc.description.abstract | <p>Confluence is a novel non-Intersection over Union (IoU) alternative to Non-Maxima Suppression (NMS) in bounding box post-processing in object detection. It overcomes the inherent limitations of IoU-based NMS variants to provide a more stable, consistent predictor of bounding box clustering by using a normalized Manhattan Distance inspired proximity metric to represent bounding box clustering. Unlike Greedy and Soft NMS, it does not rely solely on classification confidence scores to select optimal bounding boxes, instead selecting the box which is closest to every other box within a given cluster and removing highly confluent neighboring boxes. Confluence is experimentally validated on the MS COCO and CrowdHuman benchmarks, improving Average Precision by 0.2--2.7% and 1--3.8% respectively and Average Recall by 1.3--9.3 and 2.4--7.3% when compared against Greedy and Soft-NMS variants. Quantitative results are supported by extensive qualitative analysis and threshold sensitivity analysis experiments support the conclusion that Confluence is more robust than NMS variants. Confluence represents a paradigm shift in bounding box processing, with potential to replace IoU in bounding box regression processes.</p> | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers | en |
dc.relation.ispartof | IEEE Transactions on Pattern Analysis and Machine Intelligence | en |
dc.title | Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1109/TPAMI.2023.3273210 | en |
local.contributor.firstname | Andrew J | en |
local.contributor.firstname | Gregory | en |
local.contributor.firstname | Paul | en |
local.contributor.firstname | Ljiljana | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | asheple2@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | wkwan2@une.edu.au | en |
local.profile.email | lbrankov@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United State of America | en |
local.format.startpage | 11561 | en |
local.format.endpage | 11574 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 45 | en |
local.identifier.issue | 10 | en |
local.title.subtitle | A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection | en |
local.contributor.lastname | Shepley | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Kwan | en |
local.contributor.lastname | Brankovic | en |
dc.identifier.staff | une-id:asheple2 | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:wkwan2 | en |
dc.identifier.staff | une-id:lbrankov | en |
local.profile.orcid | 0000-0001-7511-4967 | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.orcid | 0000-0002-5056-4627 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61991 | en |
dc.identifier.academiclevel | Student | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Confluence | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Shepley, Andrew J | en |
local.search.author | Falzon, Gregory | en |
local.search.author | Kwan, Paul | en |
local.search.author | Brankovic, Ljiljana | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.subject.for2020 | 460304 Computer vision | en |
local.subject.seo2020 | 220499 Information systems, technologies and services not elsewhere classified | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
SCOPUSTM
Citations
17
checked on Nov 2, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.