Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61989
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlfalayleh, Mousaen
dc.contributor.authorBrankovic, Ljiljanaen
local.source.editorEditor(s): Jan, K., Miller, M., Froncek, D.en
dc.date.accessioned2024-08-07T02:42:21Z-
dc.date.available2024-08-07T02:42:21Z-
dc.date.issued2015-01-01-
dc.identifier.citationCombinatorial Algorithms, IWOCA 2014, p. 24-36en
dc.identifier.isbn9783319193151en
dc.identifier.isbn9783319193144en
dc.identifier.urihttps://hdl.handle.net/1959.11/61989-
dc.description.abstract<p>It is well recognised that data mining and statistical analysis pose a serious treat to privacy. This is true for financial, medical, criminal and marketing research. Numerous techniques have been proposed to protect privacy, including restriction and data modification. Recently proposed privacy models such as differential privacy and k-anonymity received a lot of attention and for the latter there are now several improvements of the original scheme, each removing some security shortcomings of the previous one. However, the challenge lies in evaluating and comparing privacy provided by various techniques. In this paper we propose a novel entropy based security measure that can be applied to any generalisation, restriction or data modification technique. We use our measure to empirically evaluate and compare a few popular methods, namely query restriction, sampling and noise addition.</p>en
dc.languageenen
dc.publisherSpringer, Chamen
dc.relation.ispartofCombinatorial Algorithms, IWOCA 2014en
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.titleQuantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risken
dc.typeConference Publicationen
dc.relation.conferenceIWOCA 2014: 25th International Workshop on Combinatorial Algorithmsen
dc.identifier.doi10.1007/978-3-319-19315-1_3en
local.contributor.firstnameMousaen
local.contributor.firstnameLjiljanaen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillbrankov@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference15th - 17th October, 2014en
local.conference.placeDuluth, USAen
local.publisher.placeUnited Kingdomen
local.format.startpage24en
local.format.endpage36en
local.series.issn1611-3349en
local.series.issn0302-9743en
local.series.number8986en
local.peerreviewedYesen
local.title.subtitleA Novel Entropy-Based Measure of Disclosure Risken
local.contributor.lastnameAlfalaylehen
local.contributor.lastnameBrankovicen
dc.identifier.staffune-id:lbrankoven
local.profile.orcid0000-0002-5056-4627en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61989en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleQuantifying Privacyen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIWOCA 2014: 25th International Workshop on Combinatorial Algorithms, Duluth, USA, 15th - 17th October, 2014en
local.search.authorAlfalayleh, Mousaen
local.search.authorBrankovic, Ljiljanaen
local.uneassociationNoen
local.atsiresearchNoen
local.conference.venueDuluth, MN, USAen
local.sensitive.culturalNoen
local.year.published2015en
local.subject.for2020460402 Data and information privacyen
local.subject.for2020461305 Data structures and algorithmsen
local.subject.seo2020220405 Cybersecurityen
local.date.start2014-10-15-
local.date.end2014-10-17-
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

2
checked on Jan 25, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.