Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61885
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Peng | en |
dc.contributor.author | Sanin, Cesar | en |
dc.contributor.author | Szczerbicki, Edward | en |
dc.date.accessioned | 2024-08-01T22:11:02Z | - |
dc.date.available | 2024-08-01T22:11:02Z | - |
dc.date.issued | 2015-02-20 | - |
dc.identifier.citation | Neurocomputing, v.150, p. 50-57 | en |
dc.identifier.issn | 1872-8286 | en |
dc.identifier.issn | 0925-2312 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61885 | - |
dc.description.abstract | <p>In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowledge structures (SOEKS) and evolutionary algorithms, NSGA-II (Non-dominated Sorting Genetic Algorithm II), to solve multiple optimization problems. The proposed structure uses experience that is derived from a former decision event to improve the evolutionary algorithm’s ability to find optimal solutions rapidly and efficiently. It is embedded in a smart experience-based data analysis system (SEDAS) introduced in the paper. Experimental illustrative results of SEDAS application to solve a travelling salesman problem show that our new proposed hybrid model can find optimal or close to true Pareto-optimal solutions in a fast and efficient way.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Neurocomputing | en |
dc.title | Evolutionary algorithm and decisional DNA for multiple travelling salesman problem | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.neucom.2014.01.075 | en |
local.contributor.firstname | Peng | en |
local.contributor.firstname | Cesar | en |
local.contributor.firstname | Edward | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cmaldon3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.format.startpage | 50 | en |
local.format.endpage | 57 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 150 | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Sanin | en |
local.contributor.lastname | Szczerbicki | en |
dc.identifier.staff | une-id:cmaldon3 | en |
local.profile.orcid | 0000-0001-8515-417X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61885 | en |
local.date.onlineversion | 2014-10-06 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Evolutionary algorithm and decisional DNA for multiple travelling salesman problem | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Wang, Peng | en |
local.search.author | Sanin, Cesar | en |
local.search.author | Szczerbicki, Edward | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2014 | en |
local.year.published | 2015 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/98217b0a-b8ab-4a7c-b545-707bcd1876f7 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-02 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
26
checked on Nov 2, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.