Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61885
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Pengen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-08-01T22:11:02Z-
dc.date.available2024-08-01T22:11:02Z-
dc.date.issued2015-02-20-
dc.identifier.citationNeurocomputing, v.150, p. 50-57en
dc.identifier.issn1872-8286en
dc.identifier.issn0925-2312en
dc.identifier.urihttps://hdl.handle.net/1959.11/61885-
dc.description.abstract<p>In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowledge structures (SOEKS) and evolutionary algorithms, NSGA-II (Non-dominated Sorting Genetic Algorithm II), to solve multiple optimization problems. The proposed structure uses experience that is derived from a former decision event to improve the evolutionary algorithm’s ability to find optimal solutions rapidly and efficiently. It is embedded in a smart experience-based data analysis system (SEDAS) introduced in the paper. Experimental illustrative results of SEDAS application to solve a travelling salesman problem show that our new proposed hybrid model can find optimal or close to true Pareto-optimal solutions in a fast and efficient way.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofNeurocomputingen
dc.titleEvolutionary algorithm and decisional DNA for multiple travelling salesman problemen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.neucom.2014.01.075en
local.contributor.firstnamePengen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage50en
local.format.endpage57en
local.peerreviewedYesen
local.identifier.volume150en
local.contributor.lastnameWangen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61885en
local.date.onlineversion2014-10-06-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEvolutionary algorithm and decisional DNA for multiple travelling salesman problemen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorWang, Pengen
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2014en
local.year.published2015en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/98217b0a-b8ab-4a7c-b545-707bcd1876f7en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-02en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

26
checked on Nov 2, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.