Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61858
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Haoxien
dc.contributor.authorLi, Feien
dc.contributor.authorWang, Juanen
dc.contributor.authorWang, Zulien
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-29T21:33:49Z-
dc.date.available2024-07-29T21:33:49Z-
dc.date.issued2017-
dc.identifier.citationCybernetics and Systems, 48(3), p. 162-181en
dc.identifier.issn1087-6553en
dc.identifier.issn0196-9722en
dc.identifier.urihttps://hdl.handle.net/1959.11/61858-
dc.description.abstract<p>The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade.The main reason behind this interest is the capabilities of the IoT for seamlessly integrating classical networks and networked objects, and hence allowing people to create an intelligent environment based on this powerful integration. However, how to extract useful information from data produced by IoT and facilitate standard knowledge sharing among different IoT systems are still open issues to be addressed. In this paper, we propose a novel approach, the Experience-Oriented Smart Things (EOST), that utilizes deep learning and knowledge representation concept called Decisional DNA to help IoT systems acquire, represent, and store knowledge, as well as share it amid various domains where it can be required to support decisions. Decisional DNA motivation stems from the role of deoxyribonucleic acid (DNA) in storing and sharing information and knowledge. We demonstrate our approach in a set of experiments, in which the IoT systems use knowledge gained from past experience to make decisions and predictions. The presented initial results show that the EOST is a very promising approach for knowledge capture, representation, sharing, and reusing in IoT systems.</p>en
dc.languageenen
dc.publisherTaylor & Francis Incen
dc.relation.ispartofCybernetics and Systemsen
dc.titleExperience-Oriented Intelligence for Internet of Thingsen
dc.typeJournal Articleen
dc.identifier.doi10.1080/01969722.2016.1276771en
local.contributor.firstnameHaoxien
local.contributor.firstnameFeien
local.contributor.firstnameJuanen
local.contributor.firstnameZulien
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage162en
local.format.endpage181en
local.peerreviewedYesen
local.identifier.volume48en
local.identifier.issue3en
local.contributor.lastnameZhangen
local.contributor.lastnameLien
local.contributor.lastnameWangen
local.contributor.lastnameWangen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61858en
local.date.onlineversion2017-03-02-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleExperience-Oriented Intelligence for Internet of Thingsen
local.relation.fundingsourcenoteThis work is supported by the Project KYTZ201422 by the Scientific Research Foundation of CUIT, the Application Basic Research Project of Sichuan Province (No. 2014JY0071), and the Open Project of Network and Data Security Key Laboratory of Sichuan province (NDS2015-01).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorZhang, Haoxien
local.search.authorLi, Feien
local.search.authorWang, Juanen
local.search.authorWang, Zulien
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2017en
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a6564b86-2944-403a-b95c-02fe59836021en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-01en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.