Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61848
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Oliveira, Caterine Silvaen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-29T01:01:11Z-
dc.date.available2024-07-29T01:01:11Z-
dc.date.issued2018-
dc.identifier.citationProcedia Computer Science, v.126, p. 1837-1846en
dc.identifier.issn1877-0509en
dc.identifier.urihttps://hdl.handle.net/1959.11/61848-
dc.description.abstract<p>The combination of vision and sensor data together with the resulting necessity for formal representations builds a central component of an autonomous Cyber Physical System for detection and tracking of laborers in workplaces environments. This system must be adaptable and perceive the environment as automatically as possible, performing in a variety of plants and scenes without the necessity of recoding the application for each specific use. But each recognition system has its own inherent limits, especially those which task is to work in unidentified environments and deal with unknown scenarios and specifications. The platform described in this paper takes this into account by connecting the probabilistic area of event detection with the logical area of formal reasoning in a Cognitive Vision Platform for Hazard Control (CVP-HC). In order to support formal reasoning, additional relational scene information is supplied to the recognition system. In this platform, the contextual knowledge is used to improve the recognition and interpretation of detected events. This relational data together with all collected information is represented explicitly as a Set of Experience Knowledge Structure (SOEKS), categorized and stored as a Decisional DNA (DDNA), a decisional safety fingerprint of a company. By these means, the systems assesses and addresses critical unsafe behaviors whilst gives support to an explicit long term culture change process. By the use of context the CVP-HC is capable adjust accordingly without the need of rewriting the application’s code every time conditions or specifications changes.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofProcedia Computer Scienceen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleContextual Knowledge to Enhance Workplace Hazard Recognition and Interpretation in a Cognitive Vision Platformen
dc.typeConference Publicationen
dc.relation.conferenceKES 2018: International Conference on Knowledge Based and Intelligent Information and Engineering Systemsen
dc.identifier.doi10.1016/j.procS.2018.08.093en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameCaterine Silvaen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference3rd - 5th September, 2018en
local.conference.placeBelgrade, Serbiaen
local.publisher.placeThe Netherlandsen
local.format.startpage1837en
local.format.endpage1846en
local.peerreviewedYesen
local.identifier.volume126en
local.access.fulltextYesen
local.contributor.lastnamede Oliveiraen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61848en
local.date.onlineversion2018-08-28-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleContextual Knowledge to Enhance Workplace Hazard Recognition and Interpretation in a Cognitive Vision Platformen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsKES 2018: International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Belgrade, Serbia, 3rd - 5th September, 2018en
local.search.authorde Oliveira, Caterine Silvaen
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5478fadc-e1ee-49d5-9ab0-801d28dfc436en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2018en
local.year.published2018en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5478fadc-e1ee-49d5-9ab0-801d28dfc436en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/5478fadc-e1ee-49d5-9ab0-801d28dfc436en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-09en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ContextualOliveira2018ConferencePublication.pdfPublished version936.22 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons