Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61749
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bakhtari, Ahmad Reshad | en |
dc.contributor.author | Waris, Mohammad Maqbool | en |
dc.contributor.author | Sanin, Cesar | en |
dc.contributor.author | Szczerbicki, Edward | en |
dc.date.accessioned | 2024-07-22T11:05:37Z | - |
dc.date.available | 2024-07-22T11:05:37Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.citation | Cybernetics and Systems, 52(5), p. 350-378 | en |
dc.identifier.issn | 1087-6553 | en |
dc.identifier.issn | 0196-9722 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61749 | - |
dc.description.abstract | <p>The fourth industrial revolution known as Industry 4.0 is reshaping and evolving the way industries produce products and individuals live and work therefore, gaining massive attraction from academia, business, and politics. The manufacturing industries are optimistic regarding the opportunities that Industry 4.0 may offer such as improved efficiency, productivity and customization. The present research contributes to the Industry 4.0 literature by identifying, modeling, analyzing, and prioritizing the challenges in implementing Industry 4.0 in manufacturing industries. In doing so, the article first introduces the interpretive structural modeling (ISM) to develop the hierarchical relationships among the challenges and analyzes their mutual interactions. Further, “Matrice d’Impacts Croises Multiplication Appliquee aun Classement” (MICMAC) analysis is used to categorize the challenges into four categories, namely autonomous, driver, dependent, and linkage based on their driving power and dependence power. Moreover, fuzzy analytic hierarchy process (F-AHP) methodology is used to prioritize the challenges based on three criteria: driving power, dependence power, and change management. The hierarchical model developed through ISM methodology shows that “lack of vision and leadership from top management (C12), lack of skills training program and education (C2), and uncertainty of return on investment (C9)” are the major challenges in implementing Industry 4.0 in manufacturing industries. The findings of F-AHP analysis suggest that “lack of vision and leadership from top management (C12), lack of skilled workforce (C3), lack of skills training program and education (C2), and uncertainty of return on investment (C9)” are some of the major challenges of implementing Industry 4.0. Finally, the obtained results show how challenges affect other so that to uncover the root cause triggering the other challenges. The industrial practitioners and managers can then take advantage of these analyses to know which challenge acts as the main barrier in implementing Industry 4.0 and to be focused first in order to reach a solution.</p> | en |
dc.language | en | en |
dc.publisher | Taylor & Francis Inc | en |
dc.relation.ispartof | Cybernetics and Systems | en |
dc.title | Evaluating Industry 4.0 Implementation Challenges Using Interpretive Structural Modeling and Fuzzy Analytic Hierarchy Process | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1080/01969722.2020.1871226 | en |
local.contributor.firstname | Ahmad Reshad | en |
local.contributor.firstname | Mohammad Maqbool | en |
local.contributor.firstname | Cesar | en |
local.contributor.firstname | Edward | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cmaldon3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 350 | en |
local.format.endpage | 378 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 52 | en |
local.identifier.issue | 5 | en |
local.contributor.lastname | Bakhtari | en |
local.contributor.lastname | Waris | en |
local.contributor.lastname | Sanin | en |
local.contributor.lastname | Szczerbicki | en |
dc.identifier.staff | une-id:cmaldon3 | en |
local.profile.orcid | 0000-0001-8515-417X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61749 | en |
local.date.onlineversion | 2021-01-29 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Evaluating Industry 4.0 Implementation Challenges Using Interpretive Structural Modeling and Fuzzy Analytic Hierarchy Process | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Bakhtari, Ahmad Reshad | en |
local.search.author | Waris, Mohammad Maqbool | en |
local.search.author | Sanin, Cesar | en |
local.search.author | Szczerbicki, Edward | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/e45d8735-cbd2-4a90-94e7-a32a3baaa345 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-25 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
39
checked on Nov 23, 2024
Page view(s)
266
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.