Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61565
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtmakuru, Anirudhen
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorFaust, Oliveren
dc.contributor.authorSalvi, Massimoen
dc.contributor.authorDatta Barua, Prabalen
dc.contributor.authorMolinari, Filippoen
dc.contributor.authorAcharya, U Ren
dc.contributor.authorHomaira, Nusraten
dc.date.accessioned2024-07-10T08:26:33Z-
dc.date.available2024-07-10T08:26:33Z-
dc.date.issued2024-
dc.identifier.citationExpert Systems with Applications, v.255, p. 1-23en
dc.identifier.issn1873-6793en
dc.identifier.issn0957-4174en
dc.identifier.urihttps://hdl.handle.net/1959.11/61565-
dc.description.abstract<p>This study presents a comprehensive systematic review focusing on the applications of deep learning techniques in lung cancer radiomics. Through a rigorous screening process of 589 scientific publications following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we selected 153 papers for an in-depth analysis. These papers were categorized based on imaging modality, deep learning model type, and practical applications in lung cancer, such as detection and survival prediction. We specifically emphasized deep learning models and examined their strengths and limitations for each application and imaging modality. Furthermore, we identified potential limitations within the field and proposed future research directions.</p> <p>This study serves as a pioneering resource, being the first comprehensive and systematic review of deep learning techniques, specifically in the context of lung cancer-related applications. Our primary objective was to provide a reference for future research, encouraging the advancement of deep learning techniques in the diagnosis and treatment of lung cancer. By suggesting the most effective deep learning tools for specific application areas, we offer a benchmark for future studies.</p> <p>In summary, this study consolidates and expands existing knowledge on deep learning and radiomics applications in lung cancer. It provides a foundation for further research and serves as a guide for developing and evaluating deep learning models in lung cancer-related applications.</p>en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofExpert Systems with Applicationsen
dc.titleDeep learning in radiology for lung cancer diagnostics: A systematic review of classification, segmentation, and predictive modeling techniquesen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.eswa.2024.124665en
local.contributor.firstnameAnirudhen
local.contributor.firstnameSubrataen
local.contributor.firstnameOliveren
local.contributor.firstnameMassimoen
local.contributor.firstnamePrabalen
local.contributor.firstnameFilippoen
local.contributor.firstnameU Ren
local.contributor.firstnameNusraten
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber124665en
local.format.startpage1en
local.format.endpage23en
local.peerreviewedYesen
local.identifier.volume255en
local.title.subtitleA systematic review of classification, segmentation, and predictive modeling techniquesen
local.contributor.lastnameAtmakuruen
local.contributor.lastnameChakrabortyen
local.contributor.lastnameFausten
local.contributor.lastnameSalvien
local.contributor.lastnameDatta Baruaen
local.contributor.lastnameMolinarien
local.contributor.lastnameAcharyaen
local.contributor.lastnameHomairaen
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61565en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDeep learning in radiology for lung cancer diagnosticsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAtmakuru, Anirudhen
local.search.authorChakraborty, Subrataen
local.search.authorFaust, Oliveren
local.search.authorSalvi, Massimoen
local.search.authorDatta Barua, Prabalen
local.search.authorMolinari, Filippoen
local.search.authorAcharya, U Ren
local.search.authorHomaira, Nusraten
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/fc50238c-5522-4519-a77c-c21a59319fbben
local.subject.seo20202801en
local.codeupdate.date2024-11-01T10:04:03.976en
local.codeupdate.epersonschakra3@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20204601 Applied computingen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

3
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.