Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Zhongyien
dc.contributor.authorBao, Yukunen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorXiong, Taoen
dc.date.accessioned2024-07-10T01:07:16Z-
dc.date.available2024-07-10T01:07:16Z-
dc.date.issued2015-05-01-
dc.identifier.citationEnergy, v.84, p. 419-431en
dc.identifier.issn1873-6785en
dc.identifier.issn0360-5442en
dc.identifier.urihttps://hdl.handle.net/1959.11/61484-
dc.description.abstract<p>Accurate forecasting of mid-term electricity load is an important issue for power system planning and operation. Instead of point load forecasting, this study aims to model and forecast mid-term interval loads up to one month in the form of interval-valued series consisting of both peak and valley points by using MSVR (Multi-output Support Vector Regression). In addition, an MA (Memetic Algorithm) based on the firefly algorithm is used to select proper input features among the feature candidates, which include time lagged loads as well as temperatures. The capability of this proposed interval load modeling and forecasting framework to predict daily interval electricity demands is tested through simulation experiments using real-world data from North America and Australia. Quantitative and comprehensive assessments are performed and the experimental results show that the proposed MSVR-MA forecasting framework may be a promising alternative for interval load forecasting.</p>en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofEnergyen
dc.titleMid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selectionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.energy.2015.03.054en
local.contributor.firstnameZhongyien
local.contributor.firstnameYukunen
local.contributor.firstnameRaymonden
local.contributor.firstnameTaoen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage419en
local.format.endpage431en
local.peerreviewedYesen
local.identifier.volume84en
local.contributor.lastnameHuen
local.contributor.lastnameBaoen
local.contributor.lastnameChiongen
local.contributor.lastnameXiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61484en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selectionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorHu, Zhongyien
local.search.authorBao, Yukunen
local.search.authorChiong, Raymonden
local.search.authorXiong, Taoen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/ad7debc6-6fd6-4f4e-a7f1-56eebcd8e905en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2015en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/ad7debc6-6fd6-4f4e-a7f1-56eebcd8e905en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ad7debc6-6fd6-4f4e-a7f1-56eebcd8e905en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

106
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.