Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61482
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Zhongyien
dc.contributor.authorBao, Yukunen
dc.contributor.authorXiong, Taoen
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:07:10Z-
dc.date.available2024-07-10T01:07:10Z-
dc.date.issued2015-
dc.identifier.citationEngineering Applications of Artificial Intelligence, v.40, p. 17-27en
dc.identifier.issn1873-6769en
dc.identifier.issn0952-1976en
dc.identifier.urihttps://hdl.handle.net/1959.11/61482-
dc.description.abstract<p>Selection of input features plays an important role in developing models for short-term load forecasting (STLF). Previous studies along this line of research have focused pre-dominantly on filter and wrapper methods. Given the potential value of a hybrid selection scheme that includes both filter and wrapper methods in constructing an appropriate pool of features, coupled with the general lack of success in employing filter or wrapper methods individually, in this study we propose a hybrid filter–wrapper approach for STLF feature selection. This proposed approach, which is believed to have taken full advantage of the strengths of both filter and wrapper methods, first uses the Partial Mutual Information based filter method to filter out most of the irrelevant and redundant features, and subsequently applies a wrapper method, implemented via a firefly algorithm, to further reduce the redundant features without degrading the forecasting accuracy. The well-established support vector regression is selected as the modeler to implement the proposed hybrid feature selection scheme. Real-world electricity load datasets from a North-American electric utility and the Global Energy Forecasting Competition 2012 have been used to test the performance of the proposed approach, and the experimental results show its superiority over selected counterparts.</p>en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen
dc.titleHybrid filter-wrapper feature selection for short-term load forecastingen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.engappai.2014.12.014en
local.contributor.firstnameZhongyien
local.contributor.firstnameYukunen
local.contributor.firstnameTaoen
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage17en
local.format.endpage27en
local.peerreviewedYesen
local.identifier.volume40en
local.contributor.lastnameHuen
local.contributor.lastnameBaoen
local.contributor.lastnameXiongen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61482en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleHybrid filter-wrapper feature selection for short-term load forecastingen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorHu, Zhongyien
local.search.authorBao, Yukunen
local.search.authorXiong, Taoen
local.search.authorChiong, Raymonden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2015en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/8e8e9ebb-ebf0-4e57-9fa0-0e6edc3ff916en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

181
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.