Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShi, Weien
dc.contributor.authorWeise, Thomasen
dc.contributor.authorChiong, P R Raymonden
dc.contributor.authorCatay, Bülenten
dc.date.accessioned2024-07-10T01:07:03Z-
dc.date.available2024-07-10T01:07:03Z-
dc.date.issued2015-
dc.identifier.citationProceedings of IEEE Symposium Series on Computational Intelligence, SSCI 2015, p. 1735-1742en
dc.identifier.isbn9781479975600en
dc.identifier.urihttps://hdl.handle.net/1959.11/61480-
dc.description.abstract<p>The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known combinatorial optimization problem found in many practical logistics planning operations. While exact methods designed for solving the VRPTW aim at minimizing the total distance traveled by the vehicles, heuristic methods usually employ a hierarchical objective approach in which the primary objective is to reduce the number of vehicles needed to serve the customers while the secondary objective is to minimize the total distance. In this paper, we apply a holistic approach that optimizes both objectives simultaneously. We consider several state-of-the-art Ant Colony Optimization (ACO) techniques from the literature, including the Min-Max Ant System, Ant Colony System, and Population-based Ant Colony Optimization (PACO). Our experimental investigation shows that PACO outperforms the others. Subsequently, we introduce a new pheromone matrix initialization approach for PACO (PI-PACO) that uses information extracted from the problem instance at hand and enforces pheromone assignments to edges that form feasible building blocks of tours. Our computational tests show that PI-PACO performs better than PACO. To further enhance its performance, we hybridize it with a local search method. The resulting algorithm is efficient in producing high quality solutions and outperforms similar hybrid ACO techniques.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartofProceedings of IEEE Symposium Series on Computational Intelligence, SSCI 2015en
dc.titleHybrid PACO with enhanced pheromone initialization for solving the vehicle routing problem with time windowsen
dc.typeConference Publicationen
dc.relation.conferenceSSCI 2015: IEEE Symposium Series on Computational Intelligenceen
dc.identifier.doi10.1109/SSCI.2015.242en
local.contributor.firstnameWeien
local.contributor.firstnameThomasen
local.contributor.firstnameP R Raymonden
local.contributor.firstnameBülenten
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference7th - 10thj December, 2015en
local.conference.placeCape Town, South Africaen
local.publisher.placeUnited States of Americaen
local.format.startpage1735en
local.format.endpage1742en
local.peerreviewedYesen
local.contributor.lastnameShien
local.contributor.lastnameWeiseen
local.contributor.lastnameChiongen
local.contributor.lastnameCatayen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61480en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleHybrid PACO with enhanced pheromone initialization for solving the vehicle routing problem with time windowsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsSSCI 2015: IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7th - 10thj December, 2015en
local.search.authorShi, Weien
local.search.authorWeise, Thomasen
local.search.authorChiong, P R Raymonden
local.search.authorCatay, Bülenten
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2015en
local.year.presented2015en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-29en
Appears in Collections:Conference Publication
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

7
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.