Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61479
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xiong, Tao | en |
dc.contributor.author | Bao, Yukun | en |
dc.contributor.author | Hu, Zhongyi | en |
dc.contributor.author | Chiong, Raymond | en |
dc.date.accessioned | 2024-07-10T01:06:59Z | - |
dc.date.available | 2024-07-10T01:06:59Z | - |
dc.date.issued | 2015-06-01 | - |
dc.identifier.citation | Information Sciences, v.305, p. 77-92 | en |
dc.identifier.issn | 1872-6291 | en |
dc.identifier.issn | 0020-0255 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61479 | - |
dc.description.abstract | <p>Interval time series prediction is one of the most challenging research topics in the field of time series modeling and prediction. In view of the remarkable function approximation capability of fully complex-valued radial basis function neural networks (FCRBFNNs), we set out to investigate the possibility of forecasting interval time series by denoting the lower and upper bounds of the interval as real and imaginary parts of a complex number, respectively. This results in a complex-valued interval. We then model the resulted complex-valued interval time series via a FCRBFNN. Furthermore, we propose to evolve the FCRBFNN by using particle swarm optimization (PSO) and discrete PSO for joint optimization of the structure and parameters. Finally, the proposed interval time series prediction approach is tested with simulated interval time series data as well as real interval stock price time series data from the New York Stock Exchange. Our experimental results indicate that it is a promising alternative for interval time series forecasting.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier Inc | en |
dc.relation.ispartof | Information Sciences | en |
dc.title | Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.ins.2015.01.029 | en |
local.contributor.firstname | Tao | en |
local.contributor.firstname | Yukun | en |
local.contributor.firstname | Zhongyi | en |
local.contributor.firstname | Raymond | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 77 | en |
local.format.endpage | 92 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 305 | en |
local.contributor.lastname | Xiong | en |
local.contributor.lastname | Bao | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61479 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms | en |
local.relation.fundingsourcenote | This work was supported by the Fundamental Research Funds for the Central Universities (Project No. 2662014BQ045 and Program No. 2014QN205-HUST), the Natural Science Foundation of China (Project No. 70771042), the MOE (Ministry of Education in China) Project of Humanities and Social Science (Project No. 13YJA630002), as well as a grant from the Modern Information Management Research Center at Huazhong University of Science and Technology (2013WZ005). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Xiong, Tao | en |
local.search.author | Bao, Yukun | en |
local.search.author | Hu, Zhongyi | en |
local.search.author | Chiong, Raymond | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/638d826f-1a0c-45b0-ac33-29e7d6752ea6 | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2015 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/638d826f-1a0c-45b0-ac33-29e7d6752ea6 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/638d826f-1a0c-45b0-ac33-29e7d6752ea6 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
128
checked on Jan 18, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.