Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61479
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXiong, Taoen
dc.contributor.authorBao, Yukunen
dc.contributor.authorHu, Zhongyien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:06:59Z-
dc.date.available2024-07-10T01:06:59Z-
dc.date.issued2015-06-01-
dc.identifier.citationInformation Sciences, v.305, p. 77-92en
dc.identifier.issn1872-6291en
dc.identifier.issn0020-0255en
dc.identifier.urihttps://hdl.handle.net/1959.11/61479-
dc.description.abstract<p>Interval time series prediction is one of the most challenging research topics in the field of time series modeling and prediction. In view of the remarkable function approximation capability of fully complex-valued radial basis function neural networks (FCRBFNNs), we set out to investigate the possibility of forecasting interval time series by denoting the lower and upper bounds of the interval as real and imaginary parts of a complex number, respectively. This results in a complex-valued interval. We then model the resulted complex-valued interval time series via a FCRBFNN. Furthermore, we propose to evolve the FCRBFNN by using particle swarm optimization (PSO) and discrete PSO for joint optimization of the structure and parameters. Finally, the proposed interval time series prediction approach is tested with simulated interval time series data as well as real interval stock price time series data from the New York Stock Exchange. Our experimental results indicate that it is a promising alternative for interval time series forecasting.</p>en
dc.languageenen
dc.publisherElsevier Incen
dc.relation.ispartofInformation Sciencesen
dc.titleForecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithmsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ins.2015.01.029en
local.contributor.firstnameTaoen
local.contributor.firstnameYukunen
local.contributor.firstnameZhongyien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage77en
local.format.endpage92en
local.peerreviewedYesen
local.identifier.volume305en
local.contributor.lastnameXiongen
local.contributor.lastnameBaoen
local.contributor.lastnameHuen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61479en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleForecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithmsen
local.relation.fundingsourcenoteThis work was supported by the Fundamental Research Funds for the Central Universities (Project No. 2662014BQ045 and Program No. 2014QN205-HUST), the Natural Science Foundation of China (Project No. 70771042), the MOE (Ministry of Education in China) Project of Humanities and Social Science (Project No. 13YJA630002), as well as a grant from the Modern Information Management Research Center at Huazhong University of Science and Technology (2013WZ005).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorXiong, Taoen
local.search.authorBao, Yukunen
local.search.authorHu, Zhongyien
local.search.authorChiong, Raymonden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/638d826f-1a0c-45b0-ac33-29e7d6752ea6en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2015en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/638d826f-1a0c-45b0-ac33-29e7d6752ea6en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/638d826f-1a0c-45b0-ac33-29e7d6752ea6en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

128
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.