Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61476
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDing, Jian-Yaen
dc.contributor.authorSong, Shijien
dc.contributor.authorGupta, Jatinder N Den
dc.contributor.authorZhang, R.en
dc.contributor.authorChiong, Raymonden
dc.contributor.authorWu, Chengen
dc.date.accessioned2024-07-10T01:06:50Z-
dc.date.available2024-07-10T01:06:50Z-
dc.date.issued2015-05-
dc.identifier.citationApplied Soft Computing, v.30, p. 604-613en
dc.identifier.issn1872-9681en
dc.identifier.issn1568-4946en
dc.identifier.urihttps://hdl.handle.net/1959.11/61476-
dc.description.abstract<p>This paper proposes a Tabu-mechanism improved iterated greedy (TMIIG) algorithm to solve the no-wait flowshop scheduling problem with a makespan criterion. The idea of seeking further improvement in the iterated greedy (IG) algorithm framework is based on the observation that the construction phase of the original IG algorithm may not achieve good performance in escaping from local minima when incorporating the insertion neighborhood search. To overcome this limitation, we have modified the IG algorithm by utilizing a Tabu-based reconstruction strategy to enhance its exploration ability. A powerful neighborhood search method that involves insert, swap, and double-insert moves is then applied to obtain better solutions from the reconstructed solution in the previous step. Empirical results on several benchmark problem instances and those generated randomly confirm the advantages of utilizing the new reconstruction scheme. In addition, our results also show that the proposed TMIIG algorithm is relatively more effective in minimizing the makespan than other existing well-performing heuristic algorithms.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofApplied Soft Computingen
dc.titleAn improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problemen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.asoc.2015.02.006en
local.contributor.firstnameJian-Yaen
local.contributor.firstnameShijien
local.contributor.firstnameJatinder N Den
local.contributor.firstnameR.en
local.contributor.firstnameRaymonden
local.contributor.firstnameChengen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage604en
local.format.endpage613en
local.peerreviewedYesen
local.identifier.volume30en
local.contributor.lastnameDingen
local.contributor.lastnameSongen
local.contributor.lastnameGuptaen
local.contributor.lastnameZhangen
local.contributor.lastnameChiongen
local.contributor.lastnameWuen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61476en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problemen
local.relation.fundingsourcenoteThis work is supported by the National Natural Science Foundation of China under Grants 61273233, 61473141 and 61104176, as well as the Research Foundation for the Doctoral Program of Higher Education under Grants 20120002110035 and 20130002130010.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorDing, Jian-Yaen
local.search.authorSong, Shijien
local.search.authorGupta, Jatinder N Den
local.search.authorZhang, R.en
local.search.authorChiong, Raymonden
local.search.authorWu, Chengen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/c8127b7d-b6cd-44dd-8937-f658ac17c92den
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2015en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/c8127b7d-b6cd-44dd-8937-f658ac17c92den
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c8127b7d-b6cd-44dd-8937-f658ac17c92den
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

130
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.