Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61471
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, R | en |
dc.contributor.author | Chiong, Raymond | en |
dc.date.accessioned | 2024-07-10T01:06:33Z | - |
dc.date.available | 2024-07-10T01:06:33Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of Cleaner Production, v.112, p. 3361-3375 | en |
dc.identifier.issn | 2666-1292 | en |
dc.identifier.issn | 0959-6526 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61471 | - |
dc.description.abstract | <p>In recent years, there has been a growing concern over the environmental impact of traditional manufacturing, especially in terms of energy consumption and related emissions of carbon dioxide. Besides the adoption of new equipment, production scheduling could play a key role in reducing the total energy consumption of a manufacturing plant. In this paper, we explicitly introduce the objective of minimizing energy consumption into a typical production scheduling model, i.e., the job shop scheduling problem, based on a machine speed scaling framework. To solve this bi-objective optimization problem, we propose a multi-objective genetic algorithm incorporated with two problem-specific local improvement strategies. These local improvement procedures aim to enhance the solution quality by utilizing the mathematical models of two restricted subproblems derived from the original problem. Comprehensive computational experiments have been carried out to verify the effectiveness of the proposed solution approach. The results presented in this work may be useful for future research on energy-efficient production scheduling.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Journal of Cleaner Production | en |
dc.title | Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jclepro.2015.09.097 | en |
local.contributor.firstname | R | en |
local.contributor.firstname | Raymond | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.format.startpage | 3361 | en |
local.format.endpage | 3375 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 112 | en |
local.title.subtitle | A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption | en |
local.contributor.lastname | Zhang | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61471 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Solving the energy-efficient job shop scheduling problem | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Zhang, R | en |
local.search.author | Chiong, Raymond | en |
local.uneassociation | No | en |
dc.date.presented | 2016 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2016 | en |
local.year.presented | 2016 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/ceb366dc-3038-43de-8a3b-442435f811df | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
308
checked on Jan 18, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.