Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61471
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Ren
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:06:33Z-
dc.date.available2024-07-10T01:06:33Z-
dc.date.issued2016-
dc.identifier.citationJournal of Cleaner Production, v.112, p. 3361-3375en
dc.identifier.issn2666-1292en
dc.identifier.issn0959-6526en
dc.identifier.urihttps://hdl.handle.net/1959.11/61471-
dc.description.abstract<p>In recent years, there has been a growing concern over the environmental impact of traditional manufacturing, especially in terms of energy consumption and related emissions of carbon dioxide. Besides the adoption of new equipment, production scheduling could play a key role in reducing the total energy consumption of a manufacturing plant. In this paper, we explicitly introduce the objective of minimizing energy consumption into a typical production scheduling model, i.e., the job shop scheduling problem, based on a machine speed scaling framework. To solve this bi-objective optimization problem, we propose a multi-objective genetic algorithm incorporated with two problem-specific local improvement strategies. These local improvement procedures aim to enhance the solution quality by utilizing the mathematical models of two restricted subproblems derived from the original problem. Comprehensive computational experiments have been carried out to verify the effectiveness of the proposed solution approach. The results presented in this work may be useful for future research on energy-efficient production scheduling.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Cleaner Productionen
dc.titleSolving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumptionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jclepro.2015.09.097en
local.contributor.firstnameRen
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage3361en
local.format.endpage3375en
local.peerreviewedYesen
local.identifier.volume112en
local.title.subtitleA multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumptionen
local.contributor.lastnameZhangen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61471en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSolving the energy-efficient job shop scheduling problemen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorZhang, Ren
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2016-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.year.presented2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ceb366dc-3038-43de-8a3b-442435f811dfen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

308
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.