Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Siaw Lingen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorCornforth, Daviden
dc.date.accessioned2024-07-10T01:06:23Z-
dc.date.available2024-07-10T01:06:23Z-
dc.date.issued2016-05-
dc.identifier.citationDecision Support Systems, v.85, p. 34-48en
dc.identifier.issn1873-5797en
dc.identifier.issn0167-9236en
dc.identifier.urihttps://hdl.handle.net/1959.11/61469-
dc.description.abstract<p>Even though social media offers plenty of business opportunities, for a company to identify the right audience from the massive amount of social media data is highly challenging given finite resources and marketing budgets. In this paper, we present a ranking mechanism that is capable of identifying the top-k social audience members on Twitter based on an index. Data from three different Twitter business account owners was used in our experiments to validate this ranking mechanism. The results show that the index developed using a combination of semi-supervised and supervised learning methods is indeed generic enough to retrieve relevant audience members from the three different datasets. This approach of combining Fuzzy Match, Twitter Latent Dirichlet Allocation and Support Vector Machine Ensemble is able to leverage on the content of account owners to construct seed words and training datasets with minimal annotation efforts. We conclude that this ranking mechanism has the potential to be adopted in real-world applications for differentiating prospective customers from the general audience and enabling market segmentation for better business decision-making. </p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofDecision Support Systemsen
dc.titleRanking of high-value social audiences on Twitteren
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.dss.2016.02.010en
local.contributor.firstnameSiaw Lingen
local.contributor.firstnameRaymonden
local.contributor.firstnameDaviden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage34en
local.format.endpage48en
local.peerreviewedYesen
local.identifier.volume85en
local.contributor.lastnameLoen
local.contributor.lastnameChiongen
local.contributor.lastnameCornforthen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.orcid#NODATA#en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61469en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleRanking of high-value social audiences on Twitteren
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLo, Siaw Lingen
local.search.authorChiong, Raymonden
local.search.authorCornforth, Daviden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5888dfcc-4daa-4aef-95b4-33af3b54bb20en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5888dfcc-4daa-4aef-95b4-33af3b54bb20en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/5888dfcc-4daa-4aef-95b4-33af3b54bb20en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

36
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.