Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Zhongyien
dc.contributor.authorChiong, Raymonden
dc.contributor.authorPranata, Ilungen
dc.contributor.authorSusilo, Willyen
dc.contributor.authorBao, Yukunen
dc.date.accessioned2024-07-10T01:06:07Z-
dc.date.available2024-07-10T01:06:07Z-
dc.date.issued2016-
dc.identifier.citationProceedings of the 2016 IEEE Congress on Evolutionary Computation, p. 5186-5194en
dc.identifier.isbn9781509006236en
dc.identifier.isbn9781509006229en
dc.identifier.urihttps://hdl.handle.net/1959.11/61466-
dc.description.abstract<p>Malicious web domains represent a big threat to web users' privacy and security. With so much freely available data on the Internet about web domains' popularity and performance, this study investigated the performance of well-known machine learning techniques used in conjunction with this type of online data to identify malicious web domains. Two datasets consisting of malware and phishing domains were collected to build and evaluate the machine learning classifiers. Five single classifiers and four ensemble classifiers were applied to distinguish malicious domains from benign ones. In addition, a binary particle swarm optimisation (BPSO) based feature selection method was used to improve the performance of single classifiers. Experimental results show that, based on the web domains' popularity and performance data features, the examined machine learning techniques can accurately identify malicious domains in different ways. Furthermore, the BPSO-based feature selection procedure is shown to be an effective way to improve the performance of classifiers.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartofProceedings of the 2016 IEEE Congress on Evolutionary Computationen
dc.titleIdentifying malicious web domains using machine learning techniques with online credibility and performance dataen
dc.typeConference Publicationen
dc.relation.conference2016 IEEE CEC: Congress on Evolutionary Computationen
dc.identifier.doi10.1109/CEC.2016.7748347en
local.contributor.firstnameZhongyien
local.contributor.firstnameRaymonden
local.contributor.firstnameIlungen
local.contributor.firstnameWillyen
local.contributor.firstnameYukunen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference24th - 29th July, 2016en
local.conference.placeVancouver, Canadaen
local.publisher.placeUnited States of Americaen
local.format.startpage5186en
local.format.endpage5194en
local.peerreviewedYesen
local.contributor.lastnameHuen
local.contributor.lastnameChiongen
local.contributor.lastnamePranataen
local.contributor.lastnameSusiloen
local.contributor.lastnameBaoen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61466en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleIdentifying malicious web domains using machine learning techniques with online credibility and performance dataen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.details2016 IEEE CEC: Congress on Evolutionary Computation, Vancouver, Canada, 24th - 29th July, 2016en
local.search.authorHu, Zhongyien
local.search.authorChiong, Raymonden
local.search.authorPranata, Ilungen
local.search.authorSusilo, Willyen
local.search.authorBao, Yukunen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.year.presented2016en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-29en
Appears in Collections:Conference Publication
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

31
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.