Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61466
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, Zhongyi | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Pranata, Ilung | en |
dc.contributor.author | Susilo, Willy | en |
dc.contributor.author | Bao, Yukun | en |
dc.date.accessioned | 2024-07-10T01:06:07Z | - |
dc.date.available | 2024-07-10T01:06:07Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Proceedings of the 2016 IEEE Congress on Evolutionary Computation, p. 5186-5194 | en |
dc.identifier.isbn | 9781509006236 | en |
dc.identifier.isbn | 9781509006229 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61466 | - |
dc.description.abstract | <p>Malicious web domains represent a big threat to web users' privacy and security. With so much freely available data on the Internet about web domains' popularity and performance, this study investigated the performance of well-known machine learning techniques used in conjunction with this type of online data to identify malicious web domains. Two datasets consisting of malware and phishing domains were collected to build and evaluate the machine learning classifiers. Five single classifiers and four ensemble classifiers were applied to distinguish malicious domains from benign ones. In addition, a binary particle swarm optimisation (BPSO) based feature selection method was used to improve the performance of single classifiers. Experimental results show that, based on the web domains' popularity and performance data features, the examined machine learning techniques can accurately identify malicious domains in different ways. Furthermore, the BPSO-based feature selection procedure is shown to be an effective way to improve the performance of classifiers.</p> | en |
dc.language | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartof | Proceedings of the 2016 IEEE Congress on Evolutionary Computation | en |
dc.title | Identifying malicious web domains using machine learning techniques with online credibility and performance data | en |
dc.type | Conference Publication | en |
dc.relation.conference | 2016 IEEE CEC: Congress on Evolutionary Computation | en |
dc.identifier.doi | 10.1109/CEC.2016.7748347 | en |
local.contributor.firstname | Zhongyi | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Ilung | en |
local.contributor.firstname | Willy | en |
local.contributor.firstname | Yukun | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 24th - 29th July, 2016 | en |
local.conference.place | Vancouver, Canada | en |
local.publisher.place | United States of America | en |
local.format.startpage | 5186 | en |
local.format.endpage | 5194 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Pranata | en |
local.contributor.lastname | Susilo | en |
local.contributor.lastname | Bao | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61466 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Identifying malicious web domains using machine learning techniques with online credibility and performance data | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | 2016 IEEE CEC: Congress on Evolutionary Computation, Vancouver, Canada, 24th - 29th July, 2016 | en |
local.search.author | Hu, Zhongyi | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Pranata, Ilung | en |
local.search.author | Susilo, Willy | en |
local.search.author | Bao, Yukun | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2016 | en |
local.year.presented | 2016 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-29 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
SCOPUSTM
Citations
31
checked on Oct 26, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.