Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61464
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Weichenen
dc.contributor.authorWeise, Thomasen
dc.contributor.authorWu, Yuezhongen
dc.contributor.authorXu, Danen
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:06:00Z-
dc.date.available2024-07-10T01:06:00Z-
dc.date.issued2016-
dc.identifier.citationJournal of Computational and Theoretical Nanoscience, 13(6), p. 3601-3610en
dc.identifier.issn1546-1963en
dc.identifier.issn1546-1955en
dc.identifier.urihttps://hdl.handle.net/1959.11/61464-
dc.description.abstract<p>Local search algorithms such as Ejection Chain Methods (ECMs) based on the stem-and-cycle (S&C) reference structure, Lin-Kernighan (LK) heuristics, Tabu Search (TS) as well as the recently proposed Multi-Neighborhood Search (MNS) have been found to be highly competitive for solving the Traveling Salesman Problem (TSP). In this paper, we carry out a large-scale experimental study with all 110 symmetric instances from the TSPLib to investigate the performance of these algorithms. Our study is different from previous work along this line of research in that we consider the entire runtime behavior of the algorithms rather than just their end results. This leads to one of the most comprehensive comparisons of these algorithms using the TSP instances. We then introduce an improved S&C-ECM (named FSM**) that can outperform LK, TS, and MNS. In order to further boost the performance, we develop new hybrid versions of our ECM implementations by combining them with Evolutionary Algorithms and Population-based Ant Colony Optimization. We compare them to similar hybrids of LK, TS, and MNS. Our results show that hybrid algorithms of S&C-ECM, LK, TS and MNS are all very efficient for solving the TSP. We also find that the full runtime behavior comparison provides deeper and clearer insights, while focusing on end results only could have led to a misleading conclusion.</p>en
dc.languageenen
dc.publisherAmerican Scientific Publishersen
dc.relation.ispartofJournal of Computational and Theoretical Nanoscienceen
dc.titleAn improved ejection chain method and its hybrid versions for solving the traveling salesman problemen
dc.typeJournal Articleen
dc.identifier.doi10.1166/jctn.2016.5189en
local.contributor.firstnameWeichenen
local.contributor.firstnameThomasen
local.contributor.firstnameYuezhongen
local.contributor.firstnameDanen
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage3601en
local.format.endpage3610en
local.peerreviewedYesen
local.identifier.volume13en
local.identifier.issue6en
local.contributor.lastnameLiuen
local.contributor.lastnameWeiseen
local.contributor.lastnameWuen
local.contributor.lastnameXuen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61464en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn improved ejection chain method and its hybrid versions for solving the traveling salesman problemen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLiu, Weichenen
local.search.authorWeise, Thomasen
local.search.authorWu, Yuezhongen
local.search.authorXu, Danen
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2016-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.year.presented2016en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-24en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

1
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.