Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Siaw Lingen
dc.contributor.authorCambria, Eriken
dc.contributor.authorChiong, Raymonden
dc.contributor.authorCornforth, Daviden
dc.date.accessioned2024-07-10T01:05:54Z-
dc.date.available2024-07-10T01:05:54Z-
dc.date.issued2016-
dc.identifier.citationKnowledge-Based Systems, v.105, p. 236-247en
dc.identifier.issn1872-7409en
dc.identifier.issn0950-7051en
dc.identifier.urihttps://hdl.handle.net/1959.11/61462-
dc.description.abstract<p>Due to the huge volume and linguistic variation of data shared online, accurate detection of the sentiment of a message (polarity detection) can no longer rely on human assessors or through simple lexicon keyword matching. This paper presents a semi-supervised approach in constructing essential toolkits for analysing the polarity of a localised scarce-resource language, Singlish (Singaporean English). Corpusbased bootstrapping using a multilingual, multifaceted lexicon was applied to construct an annotated testing dataset, while unsupervised methods such as lexicon polarity detection, frequent item extraction through association rules and latent semantic analysis were used to identify the polarity of Singlish ngrams before human assessment was done to isolate misleading terms and remove concept ambiguity. The findings suggest that this multilingual approach outshines polarity analysis using only the English language. In addition, a hybrid combination of the Support Vector Machine and a proposed Singlish Polarity Detection algorithm, which incorporates unigram and n-gram Singlish sentic patterns with other multilingual polarity sentic patterns such as negation and adversative, is able to outperform other approaches in comparison. The promising results of a pooled testing dataset generated from the vast amount of unannotated Singlish data clearly show that our multilingual Singlish sentic pattern approach has the potential to be adopted in real-world polarity detection.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofKnowledge-Based Systemsen
dc.titleA multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detectionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.knosys.2016.04.024en
local.contributor.firstnameSiaw Lingen
local.contributor.firstnameEriken
local.contributor.firstnameRaymonden
local.contributor.firstnameDaviden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage236en
local.format.endpage247en
local.peerreviewedYesen
local.identifier.volume105en
local.contributor.lastnameLoen
local.contributor.lastnameCambriaen
local.contributor.lastnameChiongen
local.contributor.lastnameCornforthen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61462en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detectionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLo, Siaw Lingen
local.search.authorCambria, Eriken
local.search.authorChiong, Raymonden
local.search.authorCornforth, Daviden
local.uneassociationNoen
dc.date.presented2016-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.year.presented2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/05b15f2a-1dea-48a5-944a-2719efd5ef9cen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

37
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.