Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Zhiqien
dc.contributor.authorSong, Shijien
dc.contributor.authorZhang, Yulien
dc.contributor.authorDing, Jian-Yaen
dc.contributor.authorZhang, Ruien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:05:24Z-
dc.date.available2024-07-10T01:05:24Z-
dc.date.issued2017-
dc.identifier.citationEuropean Journal of Operational Research, 256(1), p. 261-274en
dc.identifier.issn1872-6860en
dc.identifier.issn0377-2217en
dc.identifier.urihttps://hdl.handle.net/1959.11/61456-
dc.description.abstract<p>This paper presents a distributionally robust (DR) optimization model for the single machine scheduling problem (SMSP) with random job processing time (JPT). To the best of our knowledge, it is the first time a DR optimization approach is applied to production scheduling problems in the literature. Unlike traditional stochastic programming models, which require an exact distribution, the presented DR-SMSP model needs only the mean-covariance information of JPT. Its aim is to find an optimal job sequence by minimizing the worst-case Conditional Value-at-Risk (Robust CVaR) of the job sequence's total flow time. We give an explicit expression of Robust CVaR, and decompose the DR-SMSP into an assignment problem and an integer second-order cone programming (I-SOCP) problem. To efficiently solve the I-SOCP problem with uncorrelated JPT, we propose three novel Cauchy-relaxation algorithms. The effectiveness and efficiency of these algorithms are evaluated by comparing them to a CPLEX solver, and robustness of the optimal job sequence is verified via comprehensive simulation experiments. In addition, the impact of confidence levels of CVaR on the tradeoff between optimality and robustness is investigated from both theoretical and practical perspectives. Our results convincingly show that the DR-SMSP model is able to enhance the robustness of the optimal job sequence and achieve risk reduction with a small sacrifice on the optimality of the mean value. Through the simulation experiments, we have also been able to identify the strength of each of the proposed algorithms.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofEuropean Journal of Operational Researchen
dc.titleDistributionally robust single machine scheduling with risk aversionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ejor.2016.06.025en
local.contributor.firstnameZhiqien
local.contributor.firstnameShijien
local.contributor.firstnameYulien
local.contributor.firstnameJian-Yaen
local.contributor.firstnameRuien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage261en
local.format.endpage274en
local.peerreviewedYesen
local.identifier.volume256en
local.identifier.issue1en
local.contributor.lastnameChangen
local.contributor.lastnameSongen
local.contributor.lastnameZhangen
local.contributor.lastnameDingen
local.contributor.lastnameZhangen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61456en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDistributionally robust single machine scheduling with risk aversionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChang, Zhiqien
local.search.authorSong, Shijien
local.search.authorZhang, Yulien
local.search.authorDing, Jian-Yaen
local.search.authorZhang, Ruien
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2017-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2017en
local.year.presented2017en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

60
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.