Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61454
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lo, Siaw Ling | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Cornforth, David | en |
dc.date.accessioned | 2024-07-10T01:05:16Z | - |
dc.date.available | 2024-07-10T01:05:16Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Expert Systems with Applications, v.81, p. 282-298 | en |
dc.identifier.issn | 1873-6793 | en |
dc.identifier.issn | 0957-4174 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61454 | - |
dc.description.abstract | <p>Social media data can be valuable in many ways. However, the vast amount of content shared and the linguistic variants of languages used on social media are making it very challenging for high-value topics to be identified. In this paper, we present an unsupervised multilingual approach for identifying highly relevant terms and topics from the mass of social media data. This approach combines term ranking, localised language analysis, unsupervised topic clustering and multilingual sentiment analysis to extract prominent topics through analysis of Twitter's tweets from a period of time. It is observed that each of the ranking methods tested has their strengths and weaknesses, and that our proposed 'Joint' ranking method is able to take advantage of the strengths of the ranking methods. This 'Joint' ranking method coupled with an unsupervised topic clustering model is shown to have the potential to discover topics of interest or concern to a local community. Practically, being able to do so may help decision makers to gauge the true opinions or concerns on the ground. Theoretically, the research is significant as it shows how an unsupervised online topic identification approach can be designed without much manual annotation effort, which may have great implications for future development of expert and intelligent systems.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier Ltd | en |
dc.relation.ispartof | Expert Systems with Applications | en |
dc.title | An unsupervised multilingual approach for online social media topic identification | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.eswa.2017.03.029 | en |
local.contributor.firstname | Siaw Ling | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | David | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 282 | en |
local.format.endpage | 298 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 81 | en |
local.contributor.lastname | Lo | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Cornforth | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61454 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | An unsupervised multilingual approach for online social media topic identification | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Lo, Siaw Ling | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Cornforth, David | en |
local.uneassociation | No | en |
dc.date.presented | 2017 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2017 | en |
local.year.presented | 2017 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/8dd0866d-f0a1-4b1c-905e-03f88b578350 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
28
checked on Jan 18, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.