Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Siaw Lingen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorCornforth, Daviden
dc.date.accessioned2024-07-10T01:05:16Z-
dc.date.available2024-07-10T01:05:16Z-
dc.date.issued2017-
dc.identifier.citationExpert Systems with Applications, v.81, p. 282-298en
dc.identifier.issn1873-6793en
dc.identifier.issn0957-4174en
dc.identifier.urihttps://hdl.handle.net/1959.11/61454-
dc.description.abstract<p>Social media data can be valuable in many ways. However, the vast amount of content shared and the linguistic variants of languages used on social media are making it very challenging for high-value topics to be identified. In this paper, we present an unsupervised multilingual approach for identifying highly relevant terms and topics from the mass of social media data. This approach combines term ranking, localised language analysis, unsupervised topic clustering and multilingual sentiment analysis to extract prominent topics through analysis of Twitter's tweets from a period of time. It is observed that each of the ranking methods tested has their strengths and weaknesses, and that our proposed 'Joint' ranking method is able to take advantage of the strengths of the ranking methods. This 'Joint' ranking method coupled with an unsupervised topic clustering model is shown to have the potential to discover topics of interest or concern to a local community. Practically, being able to do so may help decision makers to gauge the true opinions or concerns on the ground. Theoretically, the research is significant as it shows how an unsupervised online topic identification approach can be designed without much manual annotation effort, which may have great implications for future development of expert and intelligent systems.</p>en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofExpert Systems with Applicationsen
dc.titleAn unsupervised multilingual approach for online social media topic identificationen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.eswa.2017.03.029en
local.contributor.firstnameSiaw Lingen
local.contributor.firstnameRaymonden
local.contributor.firstnameDaviden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage282en
local.format.endpage298en
local.peerreviewedYesen
local.identifier.volume81en
local.contributor.lastnameLoen
local.contributor.lastnameChiongen
local.contributor.lastnameCornforthen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61454en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn unsupervised multilingual approach for online social media topic identificationen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLo, Siaw Lingen
local.search.authorChiong, Raymonden
local.search.authorCornforth, Daviden
local.uneassociationNoen
dc.date.presented2017-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2017en
local.year.presented2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/8dd0866d-f0a1-4b1c-905e-03f88b578350en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

28
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.