Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRouast, Philipp Ven
dc.contributor.authorAdam, Marc T Pen
dc.contributor.authorBurrows, Tracyen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorRollo, Meganen
dc.date.accessioned2024-07-10T01:05:04Z-
dc.date.available2024-07-10T01:05:04Z-
dc.date.issued2018-
dc.identifier.citationProceedings of the 26th European Conference on Information Systems: Beyond Digitization - Facets of Socio-Technical Change, ECIS 2018, p. 1-11en
dc.identifier.urihttps://hdl.handle.net/1959.11/61451-
dc.description.abstract<p>The rising prevalence of non-communicable diseases calls for more sophisticated approaches to support individuals in engaging in healthy lifestyle behaviors, particularly in terms of their dietary intake. Building on recent advances in information technology, user assistance systems hold the potential of combining active and passive data collection methods to monitor dietary intake and, subsequently, to support individuals in making better decisions about their diet. In this paper, we review the state-of-the-art in active and passive dietary monitoring along with the issues being faced. Building on this groundwork, we propose a research framework for user assistance systems that combine active and passive methods with three distinct levels of assistance. Finally, we outline a proof-of-concept study using video obtained from a 360-degree camera to automatically detect eating behavior from video data as a source of passive dietary monitoring for decision support.</p>en
dc.languageenen
dc.publisherComputer Science Bibliographyen
dc.relation.ispartofProceedings of the 26th European Conference on Information Systems: Beyond Digitization - Facets of Socio-Technical Change, ECIS 2018en
dc.titleUsing Deep Learning and 360 Video to Detect Eating Behavior for User Assistance Systemsen
dc.typeConference Publicationen
dc.relation.conferenceECIS 2018: 26th European Conference on Information Systems: Beyond Digitization - Facets of Socio-Technical Changeen
local.contributor.firstnamePhilipp Ven
local.contributor.firstnameMarc T Pen
local.contributor.firstnameTracyen
local.contributor.firstnameRaymonden
local.contributor.firstnameMeganen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference23rd - 28th June, 2018en
local.conference.placePortsmouth, United Kingdomen
local.publisher.placeGermanyen
local.format.startpage1en
local.format.endpage11en
local.peerreviewedYesen
local.contributor.lastnameRouasten
local.contributor.lastnameAdamen
local.contributor.lastnameBurrowsen
local.contributor.lastnameChiongen
local.contributor.lastnameRolloen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61451en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleUsing Deep Learning and 360 Video to Detect Eating Behavior for User Assistance Systemsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsECIS 2018: 26th European Conference on Information Systems: Beyond Digitization - Facets of Socio-Technical Change, Portsmouth, United Kingdom, 23rd - 28th June, 2018en
local.search.authorRouast, Philipp Ven
local.search.authorAdam, Marc T Pen
local.search.authorBurrows, Tracyen
local.search.authorChiong, Raymonden
local.search.authorRollo, Meganen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/169f3729-6201-46d6-9daf-abf1cb7588cfen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-29en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.