Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61449
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Budhi, Gregorius Satia | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Pranata, Ilung | en |
dc.contributor.author | Hu, Zhongyi | en |
dc.date.accessioned | 2024-07-10T01:04:53Z | - |
dc.date.available | 2024-07-10T01:04:53Z | - |
dc.identifier.citation | 2017 IEEE Conference on Big Data and Analytics, ICBDA 2017, Proceedings, p. 19-24 | en |
dc.identifier.isbn | 9781538607909 | en |
dc.identifier.isbn | 9781538607893 | en |
dc.identifier.isbn | 9781538607916 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61449 | - |
dc.description.abstract | <p>Online reviews and ratings are important for potential customers when deciding whether to purchase a product or service. However, reading and synthesizing the massive amount of review data, which is often unstructured, is a huge challenge. In this study, we investigate the use of machine learning models to predict rating polarity (positive, neutral or negative) through automatic classification of review texts. We apply various single and ensemble classifiers to identify rating polarity of reviews from the 2017 Yelp dataset. Experimental results show that the linear kernel Support Vector Machine, Logistic Regression and Multilayer Perceptron are among the three best single classifiers in terms of accuracy, precision, recall and F-measure. Their performances can be further improved when used as base classifiers for ensemble models.</p> | en |
dc.language | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartof | 2017 IEEE Conference on Big Data and Analytics, ICBDA 2017, Proceedings | en |
dc.title | Predicting rating polarity through automatic classification of review texts | en |
dc.type | Conference Publication | en |
dc.relation.conference | IEEE ICBDA 2017: Conference on Big Data and Analytics | en |
dc.identifier.doi | 10.1109/ICBDAA.2017.8284101 | en |
local.contributor.firstname | Gregorius Satia | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Ilung | en |
local.contributor.firstname | Zhongyi | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 16th - 17th November, 2017 | en |
local.conference.place | Kuching, Malaysia | en |
local.publisher.place | United States of America | en |
local.format.startpage | 19 | en |
local.format.endpage | 24 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Budhi | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Pranata | en |
local.contributor.lastname | Hu | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61449 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Predicting rating polarity through automatic classification of review texts | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | IEEE ICBDA 2017: Conference on Big Data and Analytics, Kuching, Malaysia, 16th - 17th November, 2017 | en |
local.search.author | Budhi, Gregorius Satia | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Pranata, Ilung | en |
local.search.author | Hu, Zhongyi | en |
local.uneassociation | No | en |
dc.date.presented | 2018 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.presented | 2018 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-29 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
SCOPUSTM
Citations
12
checked on Jan 18, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.