Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61448
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiao, Xiaoyaen
dc.contributor.authorZhang, Ruien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:04:47Z-
dc.date.available2024-07-10T01:04:47Z-
dc.date.issued2017-
dc.identifier.citation2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings, p. 1-8en
dc.identifier.isbn9781538627266en
dc.identifier.isbn9781538627273en
dc.identifier.urihttps://hdl.handle.net/1959.11/61448-
dc.description.abstract<i>A bi-objective single machine scheduling problem with energy consumption constraints is studied, in which the objective functions are the total weighted completion time and the total weighted tardiness. Given the NP-hard nature of the problem, a multi-objective particle swarm optimization (MOPSO) algorithm is adopted to solve the problem. Since the original version of the MOPSO was designed for continuous optimization problems, it is crucial to decode its results in order to obtain feasible schedules. After the algorithm framework is determined, key parameters of the MOPSO are analyzed. A design of experiments (DOE) approach based on the Taguchi method is used to optimize parameters of the MOPSO algorithm for both small-scale and large-scale problem instances. To assess the algorithm's performance, we compare it to a well-known multi-objective evolutionary algorithm, the NSGA-II. DOE analysis is also carried out for tuning the parameters of the NSGA-II. Comprehensive computational experiments with different performance measures confirm that the modified MOPSO performs well on both small-scale and large-scale instances tested, and its performance is often superior compared to the NSGA-II.</i>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartof2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedingsen
dc.titleMulti-objective optimization of single machine scheduling with energy consumption constraintsen
dc.typeConference Publicationen
dc.relation.conference2017 IEEE SSCI: Symposium Series on Computational Intelligenceen
dc.identifier.doi10.1109/SSCI.2017.8285403en
local.contributor.firstnameXiaoyaen
local.contributor.firstnameRuien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference27th November - 1st December, 2017en
local.conference.placeHonolulu, HI, USAen
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage8en
local.peerreviewedYesen
local.contributor.lastnameLiaoen
local.contributor.lastnameZhangen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61448en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMulti-objective optimization of single machine scheduling with energy consumption constraintsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.details2017 IEEE SSCI: Symposium Series on Computational Intelligence, Honolulu, HI, USA, 27th November - 1st December, 2017en
local.search.authorLiao, Xiaoyaen
local.search.authorZhang, Ruien
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2017-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2017en
local.year.presented2017en
local.subject.for20204602 Artificial intelligenceen
local.date.start2017-11-27-
local.date.end2017-12-01-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-28en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 9, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.