Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61447
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sun, Zhe | en |
dc.contributor.author | Hu, Zheng-Ping | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Wang, Meng | en |
dc.contributor.author | He, Wei | en |
dc.date.accessioned | 2024-07-10T01:04:43Z | - |
dc.date.available | 2024-07-10T01:04:43Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Journal of Circuits, Systems and Computers, 27(8), p. 1-16 | en |
dc.identifier.issn | 1793-6454 | en |
dc.identifier.issn | 0218-1266 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61447 | - |
dc.description.abstract | <p>Recent research has demonstrated the effectiveness of deep subspace learning networks, including the principal component analysis network (PCANet) and linear discriminant analysis network (LDANet), since they can extract high-level features and better represent abstract semantics of given data. However, their representation does not consider the nonlinear relationship of data and limits the use of features with nonlinear metrics. In this paper, we propose a novel architecture combining the kernel collaboration representation with deep subspace learning based on the PCANet and LDANet for facial expression recognition. First, the PCANet and LDANet are employed to learn abstract features. These features are then mapped to the kernel space to effectively capture their nonlinear similarities. Finally, we develop a simple yet effective classification method with squared ℓ<sub>2</sub> -regularization, which improves the recognition accuracy and reduces time complexity. Comprehensive experimental results based on the JAFFE, CK + , KDEF and CMU Multi-PIE datasets confirm that our proposed approach has superior performance not just in terms of accuracy, but it is also robust against block occlusion and varying parameter configurations.</p> | en |
dc.language | en | en |
dc.publisher | World Scientific Publishing Co Pte Ltd | en |
dc.relation.ispartof | Journal of Circuits, Systems and Computers | en |
dc.title | Combining the Kernel Collaboration Representation and Deep Subspace Learning for Facial Expression Recognition | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1142/S0218126618501219 | en |
local.contributor.firstname | Zhe | en |
local.contributor.firstname | Zheng-Ping | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Meng | en |
local.contributor.firstname | Wei | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Singapore | en |
local.identifier.runningnumber | 1850121 | en |
local.format.startpage | 1 | en |
local.format.endpage | 16 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 27 | en |
local.identifier.issue | 8 | en |
local.contributor.lastname | Sun | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | He | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61447 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Combining the Kernel Collaboration Representation and Deep Subspace Learning for Facial Expression Recognition | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Sun, Zhe | en |
local.search.author | Hu, Zheng-Ping | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Wang, Meng | en |
local.search.author | He, Wei | en |
local.uneassociation | No | en |
dc.date.presented | 2018 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2018 | en |
local.year.presented | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/3203322a-f498-43cf-ae54-f1723eee6326 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
25
checked on Jan 18, 2025
Page view(s)
214
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.