Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61447
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Zheen
dc.contributor.authorHu, Zheng-Pingen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorWang, Mengen
dc.contributor.authorHe, Weien
dc.date.accessioned2024-07-10T01:04:43Z-
dc.date.available2024-07-10T01:04:43Z-
dc.date.issued2018-
dc.identifier.citationJournal of Circuits, Systems and Computers, 27(8), p. 1-16en
dc.identifier.issn1793-6454en
dc.identifier.issn0218-1266en
dc.identifier.urihttps://hdl.handle.net/1959.11/61447-
dc.description.abstract<p>Recent research has demonstrated the effectiveness of deep subspace learning networks, including the principal component analysis network (PCANet) and linear discriminant analysis network (LDANet), since they can extract high-level features and better represent abstract semantics of given data. However, their representation does not consider the nonlinear relationship of data and limits the use of features with nonlinear metrics. In this paper, we propose a novel architecture combining the kernel collaboration representation with deep subspace learning based on the PCANet and LDANet for facial expression recognition. First, the PCANet and LDANet are employed to learn abstract features. These features are then mapped to the kernel space to effectively capture their nonlinear similarities. Finally, we develop a simple yet effective classification method with squared ℓ<sub>2</sub> -regularization, which improves the recognition accuracy and reduces time complexity. Comprehensive experimental results based on the JAFFE, CK + , KDEF and CMU Multi-PIE datasets confirm that our proposed approach has superior performance not just in terms of accuracy, but it is also robust against block occlusion and varying parameter configurations.</p>en
dc.languageenen
dc.publisherWorld Scientific Publishing Co Pte Ltden
dc.relation.ispartofJournal of Circuits, Systems and Computersen
dc.titleCombining the Kernel Collaboration Representation and Deep Subspace Learning for Facial Expression Recognitionen
dc.typeJournal Articleen
dc.identifier.doi10.1142/S0218126618501219en
local.contributor.firstnameZheen
local.contributor.firstnameZheng-Pingen
local.contributor.firstnameRaymonden
local.contributor.firstnameMengen
local.contributor.firstnameWeien
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSingaporeen
local.identifier.runningnumber1850121en
local.format.startpage1en
local.format.endpage16en
local.peerreviewedYesen
local.identifier.volume27en
local.identifier.issue8en
local.contributor.lastnameSunen
local.contributor.lastnameHuen
local.contributor.lastnameChiongen
local.contributor.lastnameWangen
local.contributor.lastnameHeen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61447en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCombining the Kernel Collaboration Representation and Deep Subspace Learning for Facial Expression Recognitionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSun, Zheen
local.search.authorHu, Zheng-Pingen
local.search.authorChiong, Raymonden
local.search.authorWang, Mengen
local.search.authorHe, Weien
local.uneassociationNoen
dc.date.presented2018-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.year.presented2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/3203322a-f498-43cf-ae54-f1723eee6326en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

25
checked on Jan 18, 2025

Page view(s)

214
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.