Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61446
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Zheen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zheng-pingen
dc.date.accessioned2024-07-10T01:04:37Z-
dc.date.available2024-07-10T01:04:37Z-
dc.date.issued2018-
dc.identifier.citationNeurocomputing, v.316, p. 1-9en
dc.identifier.issn1872-8286en
dc.identifier.issn0925-2312en
dc.identifier.urihttps://hdl.handle.net/1959.11/61446-
dc.description.abstract<p>Deep subspace learning (DSL) models based on the principal component analysis network (PCANet) and linear discriminant analysis network (LDANet) have shown to be promising alternatives to deep learning models when there are computing power and training data constraints. However, high dimensionality of the feature space remains a major issue for DSL models. This paper presents a novel DSL approach based on an extended dictionary representation with deep subspace features for facial expression recognition. First, we propose the use of feature pooling with DSL by adding rank-based average pooling between each subspace mapping layer. We then use spatial pyramid pooling in the output layer to overcome the high-dimensionality problem. After that, the extended dictionary is formed by expanding the feature dictionary. Finally, we apply sparse representation classification with squared 2-regularization to improve the recognition accuracy. Comprehensive experiments based on several well-established datasets confirm that our proposed approach has superior performance compared to both the baseline as well as state-of-the-art PCANet and LDANet methods, not just in terms of accuracy but also robustness against block occlusion and random corruption.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofNeurocomputingen
dc.titleAn extended dictionary representation approach with deep subspace learning for facial expression recognitionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.neucom.2018.07.045en
local.contributor.firstnameZheen
local.contributor.firstnameRaymonden
local.contributor.firstnameZheng-pingen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage1en
local.format.endpage9en
local.peerreviewedYesen
local.identifier.volume316en
local.contributor.lastnameSunen
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61446en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn extended dictionary representation approach with deep subspace learning for facial expression recognitionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSun, Zheen
local.search.authorChiong, Raymonden
local.search.authorHu, Zheng-pingen
local.uneassociationNoen
dc.date.presented2018-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.year.presented2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/107940aa-b9f1-4971-8dfe-852a8b5253a1en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

30
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.