Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Zheen
dc.contributor.authorHu, Zheng-pingen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorWang, Mengen
dc.contributor.authorZhao, Shuhuanen
dc.date.accessioned2024-07-10T01:04:34Z-
dc.date.available2024-07-10T01:04:34Z-
dc.date.issued2018-
dc.identifier.citationSignal, Image and Video Processing, v.12, p. 835-843en
dc.identifier.issn1863-1711en
dc.identifier.issn1863-1703en
dc.identifier.urihttps://hdl.handle.net/1959.11/61445-
dc.description.abstract<p>Automatic facial expression recognition has received considerable attention in the research areas of computer vision and pattern recognition. To achieve satisfactory accuracy, deriving a robust facial expression representation is especially important. In this paper, we present an adaptive weighted fusion model (AWFM), aiming to automatically determine optimal weighted values. The AWFM integrates two subspaces, i.e., unsupervised and supervised subspaces, to represent and classify query samples. The unsupervised subspace is formed by differentiated expression samples generated via an auxiliary neutral training set. The supervised subspace is obtained through the reconstruction of intra-class singular value decomposition based on low-rank decomposition from raw training data. Our experiments using three public facial expression datasets confirm that the proposed model can obtain better performance compared to conventional fusion methods as well as state-of-the-art methods from the literature.</p>en
dc.languageenen
dc.publisherSpringer UKen
dc.relation.ispartofSignal, Image and Video Processingen
dc.titleAn adaptive weighted fusion model with two subspaces for facial expression recognitionen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s11760-017-1226-0en
local.contributor.firstnameZheen
local.contributor.firstnameZheng-pingen
local.contributor.firstnameRaymonden
local.contributor.firstnameMengen
local.contributor.firstnameShuhuanen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage835en
local.format.endpage843en
local.peerreviewedYesen
local.identifier.volume12en
local.contributor.lastnameSunen
local.contributor.lastnameHuen
local.contributor.lastnameChiongen
local.contributor.lastnameWangen
local.contributor.lastnameZhaoen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61445en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn adaptive weighted fusion model with two subspaces for facial expression recognitionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSun, Zheen
local.search.authorHu, Zheng-pingen
local.search.authorChiong, Raymonden
local.search.authorWang, Mengen
local.search.authorZhao, Shuhuanen
local.uneassociationNoen
dc.date.presented2018-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.year.presented2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/fc946732-91a1-4058-89ce-d339fb6d8575en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

7
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.