Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61443
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbedi, Mehdien
dc.contributor.authorChiong, Raymonden
dc.contributor.authorNoman, Nasimulen
dc.contributor.authorZhang, Ruien
dc.date.accessioned2024-07-10T01:04:18Z-
dc.date.available2024-07-10T01:04:18Z-
dc.date.issued2017-
dc.identifier.citation2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings, p. 1-8en
dc.identifier.isbn9781538627266en
dc.identifier.isbn9781538627273en
dc.identifier.urihttps://hdl.handle.net/1959.11/61443-
dc.description.abstract<p>This paper addresses the problem of energy-efficient single-machine scheduling with cumulative deteriorating effect and multiple maintenance activities. The actual processing time of a job is defined by a general non-decreasing function dependent on the operational time of the machine between a recent maintenance activity and the job. The aim is to determine the sequence of jobs and the number of maintenance activities as well as their positions, in order to minimise energy consumption. The energy consumption here depends on both the machine's operation and maintenance time. To solve this problem, a mixed integer linear programming model is proposed. Since the problem is NP-hard, exact methods are not feasible in terms of time when the problem scale is large. We therefore present a genetic algorithm (GA), a particle swarm optimisation (PSO) algorithm and a hybrid PSO (HPSO) approach that integrates genetic operators into PSO to optimise large-scale problem instances. Comprehensive computational experiments using 72 test instances coupled with statistical analysis confirm that HPSO performs significantly better than the GA and PSO.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartof2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedingsen
dc.titleA hybrid particle swarm optimisation approach for energy-efficient single machine scheduling with cumulative deterioration and multiple maintenancesen
dc.typeConference Publicationen
dc.relation.conferenceIEEE SSCI 2017: Symposium Series on Computational Intelligence (SSCI) Conferenceen
dc.identifier.doi10.1109/SSCI.2017.8285316en
local.contributor.firstnameMehdien
local.contributor.firstnameRaymonden
local.contributor.firstnameNasimulen
local.contributor.firstnameRuien
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference27th - 1st December, 2017en
local.conference.placeHonolulu, HI, USAen
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage8en
local.peerreviewedYesen
local.contributor.lastnameAbedien
local.contributor.lastnameChiongen
local.contributor.lastnameNomanen
local.contributor.lastnameZhangen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61443en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA hybrid particle swarm optimisation approach for energy-efficient single machine scheduling with cumulative deterioration and multiple maintenancesen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIEEE SSCI 2017: Symposium Series on Computational Intelligence (SSCI) Conference, Honolulu, HI, USA, 27th - 1st December, 2017en
local.search.authorAbedi, Mehdien
local.search.authorChiong, Raymonden
local.search.authorNoman, Nasimulen
local.search.authorZhang, Ruien
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2017en
local.year.presented2018en
local.subject.for20204602 Artificial intelligenceen
local.date.start2017-11-27-
local.date.end2017-12-01-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-28en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 9, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.