Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61440
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYue, Fanen
dc.contributor.authorSong, Shijien
dc.contributor.authorZhang, Yulien
dc.contributor.authorGupta, Jatinder N Den
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:04:01Z-
dc.date.available2024-07-10T01:04:01Z-
dc.date.issued2018-
dc.identifier.citationInternational Journal of Production Research, 56(16), p. 5576-5592en
dc.identifier.issn1366-588Xen
dc.identifier.issn0020-7543en
dc.identifier.urihttps://hdl.handle.net/1959.11/61440-
dc.description.abstract<p>We study a single machine scheduling problem (SMSP) with uncertain job release times (JRTs) under the maximum waiting time (MWT) criterion. To deal with the uncertainty, a robust model is established to find an optimal schedule, which minimises the worst-case MWT (W-MWT) when JRTs vary over given time intervals. Although infinite possible scenarios for JRTs exist, we show that only n scenarios are needed for calculating the W-MWT, where n is the number of jobs. Based on this property, the robust (SMSP) with uncertain JRTs to minimise the W-MWT is formulated as a mixed integer linear programming problem. To solve large-size problem instances, an efficient two-stage heuristic (TSH) is proposed. In the first stage, n near-optimal schedules are obtained by solving n deterministic scenario-based SMSPs, and their W-MWTs are evaluated. To speed up the solution and evaluation process, a modified Gusfield's heuristic is proposed by exploiting the inner connections of these SMSPs. To further improve the schedule obtained in the first stage, the second stage consists of a variable neighbourhood search method by combining both swap neighbourhood search and insert neighbourhood search. We also develop a method to calculate the lower bound of the proposed model so that we can evaluate the performance of the solutions given by the TSH. Experimental results confirm the robustness of schedules produced and advantages of the proposed TSH over other algorithms in terms of solution quality and run time.</p>en
dc.languageenen
dc.publisherTaylor & Francisen
dc.relation.ispartofInternational Journal of Production Researchen
dc.titleRobust single machine scheduling with uncertain release times for minimising the maximum waiting timeen
dc.typeJournal Articleen
dc.identifier.doi10.1080/00207543.2018.1463473en
local.contributor.firstnameFanen
local.contributor.firstnameShijien
local.contributor.firstnameYulien
local.contributor.firstnameJatinder N Den
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage5576en
local.format.endpage5592en
local.peerreviewedYesen
local.identifier.volume56en
local.identifier.issue16en
local.contributor.lastnameYueen
local.contributor.lastnameSongen
local.contributor.lastnameZhangen
local.contributor.lastnameGuptaen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61440en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleRobust single machine scheduling with uncertain release times for minimising the maximum waiting timeen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorYue, Fanen
local.search.authorSong, Shijien
local.search.authorZhang, Yulien
local.search.authorGupta, Jatinder N Den
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2018-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.year.presented2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/fd269cff-04e0-4004-bb77-b28b1cb94488en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-22en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

21
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.