Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEbrahimi-Ghahnavieh, Amiren
dc.contributor.authorLuo, Suhuaien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:03:49Z-
dc.date.available2024-07-10T01:03:49Z-
dc.identifier.citationProceedings of IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT 2019), p. 133-138en
dc.identifier.isbn9781728137452en
dc.identifier.isbn9781728137445en
dc.identifier.isbn9781728125145en
dc.identifier.urihttps://hdl.handle.net/1959.11/61438-
dc.description.abstract<p>In this paper, we focus on Alzheimer's disease detection on Magnetic Resonance Imaging (MRI) scans using deep learning techniques. The lack of sufficient data for training a deep model is a major challenge along this line of research. From our literature review, we realised that one of the current trends is using transfer learning for 2D convolutional neural networks to classify subjects with Alzheimer's disease. In this way, each 3D MRI volume is divided into 2D image slices and a pre-trained 2D convolutional neural network can be re-trained to classify image slices independently. One issue here, however, is that the 2D convolutional neural network would not be able to consider the relationship between 2D image slices in an MRI volume and make decisions on them independently. To address this issue, we propose to use a recurrent neural network after a convolutional neural network to understand the relationship between sequences of images for each subject and make a decision based on all input slices instead of each of the slices. Our results show that training the recurrent neural network on features extracted from a convolutional neural network can improve the accuracy of the whole system.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartofProceedings of IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT 2019)en
dc.titleTransfer learning for Alzheimer's disease detection on MRI imagesen
dc.typeConference Publicationen
dc.relation.conferenceIAICT IEEE 2019: International Conference on Industry 4.0, Artificial Intelligence, and Communications Technologyen
dc.identifier.doi10.1109/ICIAICT.2019.8784845en
local.contributor.firstnameAmiren
local.contributor.firstnameSuhuaien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference1st - 3rd July, 2019en
local.conference.placeBali, Indonesiaen
local.publisher.placeUnited States of Americaen
local.format.startpage133en
local.format.endpage138en
local.peerreviewedYesen
local.contributor.lastnameEbrahimi-Ghahnaviehen
local.contributor.lastnameLuoen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61438en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTransfer learning for Alzheimer's disease detection on MRI imagesen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIAICT IEEE 2019: International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, Bali, Indonesia, 1st - 3rd July, 2019en
local.search.authorEbrahimi-Ghahnavieh, Amiren
local.search.authorLuo, Suhuaien
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2019-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.presented2019en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-29en
Appears in Collections:Conference Publication
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

79
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.