Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61438
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ebrahimi-Ghahnavieh, Amir | en |
dc.contributor.author | Luo, Suhuai | en |
dc.contributor.author | Chiong, Raymond | en |
dc.date.accessioned | 2024-07-10T01:03:49Z | - |
dc.date.available | 2024-07-10T01:03:49Z | - |
dc.identifier.citation | Proceedings of IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT 2019), p. 133-138 | en |
dc.identifier.isbn | 9781728137452 | en |
dc.identifier.isbn | 9781728137445 | en |
dc.identifier.isbn | 9781728125145 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61438 | - |
dc.description.abstract | <p>In this paper, we focus on Alzheimer's disease detection on Magnetic Resonance Imaging (MRI) scans using deep learning techniques. The lack of sufficient data for training a deep model is a major challenge along this line of research. From our literature review, we realised that one of the current trends is using transfer learning for 2D convolutional neural networks to classify subjects with Alzheimer's disease. In this way, each 3D MRI volume is divided into 2D image slices and a pre-trained 2D convolutional neural network can be re-trained to classify image slices independently. One issue here, however, is that the 2D convolutional neural network would not be able to consider the relationship between 2D image slices in an MRI volume and make decisions on them independently. To address this issue, we propose to use a recurrent neural network after a convolutional neural network to understand the relationship between sequences of images for each subject and make a decision based on all input slices instead of each of the slices. Our results show that training the recurrent neural network on features extracted from a convolutional neural network can improve the accuracy of the whole system.</p> | en |
dc.language | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartof | Proceedings of IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT 2019) | en |
dc.title | Transfer learning for Alzheimer's disease detection on MRI images | en |
dc.type | Conference Publication | en |
dc.relation.conference | IAICT IEEE 2019: International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology | en |
dc.identifier.doi | 10.1109/ICIAICT.2019.8784845 | en |
local.contributor.firstname | Amir | en |
local.contributor.firstname | Suhuai | en |
local.contributor.firstname | Raymond | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 1st - 3rd July, 2019 | en |
local.conference.place | Bali, Indonesia | en |
local.publisher.place | United States of America | en |
local.format.startpage | 133 | en |
local.format.endpage | 138 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Ebrahimi-Ghahnavieh | en |
local.contributor.lastname | Luo | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61438 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Transfer learning for Alzheimer's disease detection on MRI images | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | IAICT IEEE 2019: International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, Bali, Indonesia, 1st - 3rd July, 2019 | en |
local.search.author | Ebrahimi-Ghahnavieh, Amir | en |
local.search.author | Luo, Suhuai | en |
local.search.author | Chiong, Raymond | en |
local.uneassociation | No | en |
dc.date.presented | 2019 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.presented | 2019 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-29 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
SCOPUSTM
Citations
79
checked on Oct 26, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.