Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61435
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBudhi, Gregorius Satiaen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zhongyien
dc.contributor.authorPranata, Ilungen
dc.contributor.authorDhakal, Sandeepen
dc.date.accessioned2024-07-10T01:03:39Z-
dc.date.available2024-07-10T01:03:39Z-
dc.date.issued2018-
dc.identifier.citation2018 IEEE Conference on Big Data and Analytics, ICBDA, p. 68-73en
dc.identifier.isbn9781538671283en
dc.identifier.isbn9781538671276en
dc.identifier.isbn9781538671290en
dc.identifier.urihttps://hdl.handle.net/1959.11/61435-
dc.description.abstract<p>In the big data era, machine learning algorithms are extensively used for sentiment polarity prediction. However, identifying the correct machine learning algorithm and its parameter settings for the problem at hand can be a difficult task. We propose a system based on Particle Swarm Optimisation (PSO) to find the best machine learning algorithm and optimise its parameters for sentiment polarity prediction. The system's design consists of two layers, namely a multi-PSO layer and a knockout layer. From experimental results, we find that each PSO in the multi-PSO layer could optimise the parameters of the classifiers processed. Overall, the system is able to determine the best classifier from the collection of processed classifiers and also provide quasi-optimal parameters for the classifier to predict the sentiment polarity of customer reviews.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartof2018 IEEE Conference on Big Data and Analytics, ICBDAen
dc.titleMulti-PSO based Classifier Selection and Parameter Optimisation for Sentiment Polarity Predictionen
dc.typeConference Publicationen
dc.relation.conferenceIEEE ICBDA 2018: Conference on Big Data and Analyticsen
dc.identifier.doi10.1109/ICBDAA.2018.8629593en
local.contributor.firstnameGregorius Satiaen
local.contributor.firstnameRaymonden
local.contributor.firstnameZhongyien
local.contributor.firstnameIlungen
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference21st - 22nd November, 2018en
local.conference.placeLangkawi, Malaysiaen
local.publisher.placeUnited States of Americaen
local.format.startpage68en
local.format.endpage73en
local.peerreviewedYesen
local.contributor.lastnameBudhien
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnamePranataen
local.contributor.lastnameDhakalen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61435en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMulti-PSO based Classifier Selection and Parameter Optimisation for Sentiment Polarity Predictionen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIEEE ICBDA 2018: Conference on Big Data and Analytics, Langkawi, Malaysia, 21st - 22nd November, 2018en
local.search.authorBudhi, Gregorius Satiaen
local.search.authorChiong, Raymonden
local.search.authorHu, Zhongyien
local.search.authorPranata, Ilungen
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.year.presented2019en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-29en
Appears in Collections:Conference Publication
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

4
checked on Oct 26, 2024

Page view(s)

98
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.