Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Xinyuen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zhongyien
dc.contributor.authorCornforth, Daviden
dc.contributor.authorPage, Alister Jen
dc.date.accessioned2024-07-10T01:03:31Z-
dc.date.available2024-07-10T01:03:31Z-
dc.date.issued2019-10-15-
dc.identifier.citationJournal of Chemical Theory and Computation, 15(12), p. 6882-6894en
dc.identifier.issn1549-9626en
dc.identifier.issn1549-9618en
dc.identifier.urihttps://hdl.handle.net/1959.11/61433-
dc.description.abstract<p>Predicting adsorption energies of reaction intermediates is critical for determining catalytic reaction mechanisms. Here, we present three combined representations for predicting adsorption energies of carbon reforming species on transition-metal surfaces. Among the three combined representations, the Elemental Properties and Spectral London Axilrod−Teller−Muto (EP&SLATM) representation, which uses separate EP and SLATM representations for the surface and adsorbates, yields the lowest mean absolute error (MAE) of ∼0.18 eV with respect to density functional theory (DFT) adsorption formation energies for 68 adsorbates on four low-index metal facets (Cu(111), Pt(111), Pd(111), Ru(0001)).All three combined representations also have lower MAEs compared with linear scaling relations. Notably, two of the combined representations achieve their results using empirical/experimental molecular structures only (i.e., without recourse to structural optimization based on first-principles methods such as DFT). The combined representations enable improved efficiency for predicting heterogeneous catalytic mechanisms using machine learning approaches, largely bypassing expensive electronic structure calculations. Further, we show that the combined representations enable "cross-surface" training with regression and tree-based machine learning methods. That is, to predict adsorption formation energies on a particular catalyst metal, these methods only need a small amount of training samples (20%) on that metal.</p>en
dc.languageenen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofJournal of Chemical Theory and Computationen
dc.titleImproved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learningen
dc.typeJournal Articleen
dc.identifier.doi10.1021/acs.jctc.9b00420en
local.contributor.firstnameXinyuen
local.contributor.firstnameRaymonden
local.contributor.firstnameZhongyien
local.contributor.firstnameDaviden
local.contributor.firstnameAlister Jen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage6882en
local.format.endpage6894en
local.peerreviewedYesen
local.identifier.volume15en
local.identifier.issue12en
local.contributor.lastnameLien
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnameCornforthen
local.contributor.lastnamePageen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61433en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleImproved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learningen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLi, Xinyuen
local.search.authorChiong, Raymonden
local.search.authorHu, Zhongyien
local.search.authorCornforth, Daviden
local.search.authorPage, Alister Jen
local.uneassociationNoen
dc.date.presented2019-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.year.presented2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/2f398112-bf09-4921-9649-09b2e0649b30en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

21
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.